Частицы элементарные. Элементарные частицы Строение и свойства элементарных частиц

В физике элементарными частицами называли физические объекты в масштабах ядра атома, которые невозможно разделить на составные части. Однако, на сегодня, ученым все же удалось расщепить некоторые из них. Структуру и свойства этих мельчайших объектов изучает физика элементарных частиц.

О наименьших частицах, составляющих всю материю, было известно еще в древности. Однако, основоположниками так званого «атомизма» принято считать философа Древней Греции Левкиппа и его более известного ученика — Демокрита. Предполагается, что второй и ввел термин «атом». С древнегреческого «atomos» переводится как «неделимый», что определяет взгляды древних философов.

Позднее стало известно, что атом все же можно разделить на два физических объекта – ядро и электрон. Последний впоследствии и стал первой элементарной частицей, когда в 1897-м году англичанин Джозеф Томсон провел эксперимент с катодными лучами и выявил, что они представляют собой поток одинаковых частиц с одинаковыми массой и зарядом.

Параллельно с работами Томсона, занимающийся исследованием рентгеновского излучения Анри Беккерель проводит опыты с ураном и открывает новый вид излучения. В 1898 году французская пара физиков – Мария и Пьер Кюри изучают различные радиоактивные вещества, обнаруживая то же самое радиоактивное излучение. Позже будет установлено, что оно состоит из альфа (2 протона и 2 нейтрона) и бета-частиц (электроны), а Беккерель и Кюри получат Нобелевскую премию. Проводя свои исследования с такими элементами как уран, радий и полоний, Мария Склодовская-Кюри не предпринимала никаких мер безопасности, в том числе не использовала даже перчатки. Как следствие в 1934 году ее настигла лейкемия. В память о достижениях великого ученого, открытый парой Кюри элемент, полоний, был назван в честь родины Марии – Polonia, с латинского – Польша.

Фотография с V Сольвеевского конгресса 1927 год. Попробуйте найди всех ученых из этой статьи на данном фото.

Начиная с 1905-го года, Альберт Эйнштейн посвящает свои публикации несовершенству волновой теории света, постулаты которой расходились с результатами экспериментов. Что впоследствии привело выдающегося физика к идее о «световом кванте» — порции света. Позже, в 1926-м году, он был назван как «фотон», в переводе с греческого «phos» («свет»), американским физиохимиком — Гилбертом Н. Льюисом.

В 1913 году Эрнест Резерфорд, британский физик, основываясь на результатах уже проведенных на то время экспериментов, отметил, что массы ядер многих химических элементов кратны массе ядра водорода. Поэтому он предположил, что ядро водорода является составляющей ядер других элементов. В своем эксперименте Резерфорд облучал альфа-частицами атом азота, который в результате излучил некую частицу, названную Эрнестом как «протон», с др. греческого «протос» (первый, основной). Позже было экспериментально подтверждено, что протон – это ядро водорода.

Очевидно, протон, не единственная составная часть ядер химических элементов. К такой мысли приводит тот факт, что два протона в ядре отталкивались бы, и атом мгновенно распадался. Поэтому Резерфорд выдвинул гипотезу о наличии еще одной частицы, которая имеет массу, равную массе протона, но является незаряженной. Некоторые опыты ученых по взаимодействию радиоактивных и более легких элементов, привели их к открытию еще одного нового излучения. В 1932-м году Джеймс Чедвик определил, что оно состоит из тех самых нейтральных частиц, которые назвал нейтронами.

Таким образом, были открыты наиболее известные частицы: фотон, электрон, протон и нейтрон.

Далее открытия новых субъядерных объектов становились все более частым событием, и на данный момент известно около 350 частиц, которые принято полагать «элементарными». Те из них, которые до сих пор не удалось расщепить, считаются бесструктурными и называются «фундаментальными».

Что такое спин?

Прежде чем переходить к дальнейшим инновациям в области физики, следует определиться с характеристиками всех частиц. К наиболее известным, не считая массы и электрического заряда, относится также и спин. Данная величина называется иначе как «собственный момент импульса» и никоим образом не связана с перемещением субъядерного объекта как целого. Ученым удалось обнаружить частицы со спином 0, ½, 1, 3/2 и 2. Чтобы представить наглядно, хоть и упрощенно, спин, как свойство объекта, рассмотрим следующий пример.

Пусть у предмета имеется спин равный 1. Тогда такой объект при повороте на 360 градусов возвратится в исходное положение. На плоскости этим предметом может быть карандаш, который после разворота на 360 градусов окажется в исходном положении. В случае с нулевым спином, при любом вращении объекта он будет выглядеть всегда одинаково, к примеру, одноцветный мячик.

Для спина ½ потребуется предмет, сохраняющий свой вид при развороте на 180 градусов. Им может быть все тот же карандаш, только симметрично наточенный с обеих сторон. Спин равный 2 потребует сохранения формы при повороте на 720 градусов, а 3/2 – 540.

Данная характеристика имеет очень большое значение для физики элементарных частиц.

Стандартная модель частиц и взаимодействий

Имея внушительный набор микрообъектов, составляющих окружающий мир, ученые решили их структурировать, так образовалась известная всем теоретическая конструкция под названием «Стандартная модель». Она описывает три взаимодействия и 61 частицу при помощи 17-ти фундаментальных, некоторые из которых были ею предсказаны задолго до открытия.

Три взаимодействия таковы:

  • Электромагнитное. Оно происходит между электрически заряженными частицами. В простом случае, известном со школы, — разноименно заряженные объекты притягиваются, а одноименно – отталкиваются. Происходит это посредством, так называемого переносчика электромагнитного взаимодействия – фотона.
  • Сильное, иначе – ядерное взаимодействие. Как ясно из названия, его действие распространяется на объекты порядка ядра атома, оно отвечает за притяжение протонов, нейтронов и прочих частиц, также состоящих из кварков. Сильное взаимодействие переносится при помощи глюонов.
  • Слабое. Действует на расстояниях в тысячу меньших размера ядра. В таком взаимодействии принимают участия лептоны и кварки, а также их античастицы. При этом в случае слабого взаимодействия они могут перевоплощаться друг в друга. Переносчиками являются бозоны W+, W− и Z0.

Так Стандартная модель сформировалась следующим образом. Она включает шесть кварков, из которых состоят все адроны (частицы, подверженные сильному взаимодействию):

  • Верхний (u);
  • Очарованный (c);
  • Истинный (t);
  • Нижний (d);
  • Странный (s);
  • Прелестный (b).

Видно, что эпитетов физикам не занимать. Другие 6 частиц – лептоны. Это фундаментальные частицы со спином ½, которые не принимают участие в сильном взаимодействии.

  • Электрон;
  • Электронное нейтрино;
  • Мюон;
  • Мюонное нейтрино;
  • Тау-лептон;
  • Тау-нейтрино.

А третьей группой Стандартной модели являются калибровочные бозоны, которые имеют спин равный 1 и представляются переносчиками взаимодействий:

  • Глюон – сильное;
  • Фотон – электромагнитное;
  • Z-бозон — слабое;
  • W-бозон – слабое.

К ним также относится и недавно обнаруженный , частица со спином 0, которая, упрощенно говоря, наделяет все другие субъядерные объекты инертной массой.

В результате, согласно Стандартной модели, наш мир выглядит таким образом: все вещество состоит из 6 кварков, образующих адроны, и 6 лептонов; все эти частицы могут участвовать в трех взаимодействиях, переносчиками которых являются калибровочные бозоны.

Недостатки Стандартной модели

Однако, еще до открытия бозона Хиггса – последней частицы, предсказываемой Стандартной моделью, ученые вышли за ее пределы. Ярким примером тому есть т.н. «гравитационное взаимодействие», которое сегодня находится наравне с другими. Предположительно, переносчиком его есть частица со спином 2, которая не имеет массы, и которую физикам еще не удалось обнаружить — «гравитон».

Мало того, Стандартная модель описывает 61 частицу, а на сегодняшний день человечеству известно уже более 350 частиц. Это означает, что на достигнутом работа физиков-теоретиков не окончена.

Классификация частиц

Чтобы упростить себе жизнь, физики сгруппировали все частицы в зависимости от особенностей их строения и прочих характеристик. Классификация бывает по следующим признакам:

  • Время жизни.
    1. Стабильные. В их числе протон и антипротон, электрон и позитрон, фотон, а также гравитон. Существование стабильных частиц не ограничено временем, до тех пор, пока они находятся в свободном состоянии, т.е. не взаимодействуют с чем-либо.
    2. Нестабильные. Все остальные частицы спустя некоторое время распадаются на свои составные части, потому называются нестабильными. Например, мюон живет всего лишь 2,2 микросекунды, а протон — 2,9 10*29 лет, после чего может распасться на позитрон и нейтральный пион.
  • Масса.
    1. Безмассовые элементарные частицы, которых всего три: фотон, глюон и гравитон.
    2. Массивные частицы – все остальные.
  • Значение спина.
    1. Целый спин, в т.ч. нулевой, имеют частицы, которые называются бозоны.
    2. Частицы с полуцелым спином — фермионы.
  • Участие во взаимодействиях.
    1. Адроны (структурные частицы) – субъядерные объекты, что принимают участие во всех четырех типах взаимодействий. Ранее упоминалось, что они складываются с кварков. Адроны делятся на два подтипа: мезоны (целый спин, являются бозонами) и барионы (полуцелый спин — фермионы).
    2. Фундаментальные (бесструктурные частицы). К ним относятся лептоны, кварки и калибровочные бозоны (читайте ранее – «Стандартная модель..»).

Ознакомившись с классификацией всех частиц, можно, к примеру, точно определить некоторые из них. Так нейтрон является фермионом, адроном, а точнее барионом, и нуклоном, то есть имеет полуцелый спин, состоит из кварков и участвует в 4-х взаимодействиях. Нуклон же – это общее название для протонов и нейтронов.

  • Интересно, что противники атомизма Демокрита, который предсказывал существование атомов, заявляли, что любое вещество в мире делится до бесконечности. В какой-то мере они могут оказаться правыми, так как ученым уже удалось разделить атом на ядро и электрон, ядро на протон и нейтрон, а их в свою очередь на кварки.
  • Демокрит предполагал, что атомы имеют четкую геометрическую форму, и потому «острые» атомы огня – обжигают, шершавые атомы твердых тел крепко скрепляются своими выступами, а гладкие атомы воды проскальзывают при взаимодействии, иначе – текут.
  • Джозеф Томсон составил собственную модель атома, который представлялся ему как положительно заряженное тело, в которое как бы «воткнуты» электроны. Его модель получила название «пудинг с изюмом» (Plum pudding model).
  • Кварки получили свое название благодаря американскому физику Мюррею Гелл-Манну. Ученый хотел использовать слово, похожее на звук кряканья утки (kwork). Но в романе Джеймса Джойса «Поминки по Финнегану» встретил слово «quark», в строке «Три кварка для мистера Марка!», смысл которого точно не определен и возможно, что Джойс использовал его просто для рифмы. Мюррей решил назвать частицы этим словом, так как на то время было известно лишь три кварка.
  • Хотя фотоны, частицы света, являются безмассовыми, вблизи черной дыры, кажется, что они меняют свою траекторию, притягиваясь к ней при помощи гравитационного взаимодействия. На самом же деле сверхмассивное тело искривляет пространство-время, из-за чего любые частицы, в том числе и не имеющие массы, меняют свою траекторию в сторону черной дыры (см. ).
  • Большой адронный коллайдер именно потому «адронный», что сталкивает два направленных пучка адронов, частиц размерами порядка ядра атома, которые участвуют во всех взаимодействиях.

Дальнейшее проникновение в глубины микромира связано с переходом от уровня атомов к уровню элементарных частиц. В качестве первой элементарной частицы в конце XIX в. был открыт электрон, а затем в первые десятилетия XX в. – фотон, протон, позитрон и нейтрон.

После второй мировой войны, благодаря использованию современной экспериментальной техники, и прежде всего мощным ускорителям, в которых создаются условия высоких энергий и громадных скоростей, было установлено существование большого числа элементарных частиц – свыше 300. Среди них имеются как экспериментально обнаруженные, так и теоретически вычисленные, включая резонансы, кварки и виртуальные частицы.

Термин элементарная частица первоначально означал простейшие, далее ни на что не разложимые частицы, лежащие в основе любых материальных образований. Позднее физики осознали всю условность термина “элементарный” применительно к микрообъектам. Сейчас уже не подлежит сомнению, что частицы имеют ту или иную структуру, но, тем не менее, исторически сложившееся название продолжает существовать.

Основными характеристиками элементарных частиц являются масса, заряд, среднее время жизни, спин и квантовые числа.

Массу покоя элементарных частицопределяют по отношению к массе покоя электрона.Существуют элементарные частицы, не имеющие массы покоя, –фотоны . Остальные частицы по этому признаку делятся налептоны – легкие частицы (электрон и нейтрино);мезоны – средние частицы с массой в пределах от одной до тысячи масс электрона;барионы – тяжелые частицы, чья масса превышает тысячу масс электрона и в состав которых входят протоны, нейтроны, гипероны и многие резонансы.

Электрический заряд является другой важнейшей характеристикой элементарных частиц. Все известные частицы обладают положительным, отрицательным либо нулевым зарядом. Каждой частице, кроме фотона и двух мезонов, соответствуют античастицы с противоположным зарядом. Приблизительно в 1963–1964 гг. была высказана гипотеза о существованиикварков – частиц с дробным электрическим зарядом. Экспериментального подтверждения эта гипотеза пока не нашла.

По времени жизни частицы делятся настабильные инестабильные . Стабильных частиц пять: фотон, две разновидности нейтрино, электрон и протон. Именно стабильныечастицы играют важнейшую роль в структуре макротел. Все остальные частицы нестабильны, они существуют около 10 –10 –10 -24 с, после чего распадаются. Элементарные частицы со средним временем жизни 10 –23 –10 –22 с называют резонансами . Вследствие краткого времени жизни они распадаются еще до того, как успеют покинуть атом или атомное ядро. Резонансные состояния вычислены теоретически, зафиксировать их в реальных экспериментах не удается.

Помимо заряда, массы и времени жизни, элементарные частицы описываются также понятиями, не имеющими аналогов в классической физике: понятием спина . Спиномназывается собственный момент импульса частицы, не связанный с ее перемещением. Спин характеризуетсяспиновым квантовым числом s , которое может принимать целые (±1) или полуцелые (±1/2) значения. Частицы с целым спином –бозоны , с полуцелым –фермионы . Электрон относится к фермионам. Согласно принципу Паули в атоме не может быть более одного электрона с одним и тем же набором квантовых чиселn ,m ,l ,s . Электроны, которым соответствует волновые функции с одинаковым числомn, очень близки по энергиям и образуют в атоме электронную оболочку. Различия в числеlопределяют “подоболочку”, остальные квантовые числа определяют ее заполнение, о чем было сказано выше.

В характеристике элементарных частиц существует еще одно важное представление взаимодействия . Как отмечалось ранее, известно четыре вида взаимодействий между элементарными частицами:гравитационное , слабое , электромагнитное и сильное (ядерное).

Все частицы, имеющие массу покоя (m 0), участвуют в гравитационном взаимодействии, заряженные – и в электромагнитном. Лептоны участвуют еще и слабом взаимодействии. Адроны участвуют во всех четырех фундаментальных взаимодействиях.

Согласно квантовой теории поля, все взаимодействия осуществляются благодаря обмену виртуальными частицами , то есть частицами, о существовании которых можно судить лишь опосредовано, по некоторым их проявлениям через какие-то вторичные эффекты (реальные частицы можно непосредственно зафиксировать с помощью приборов).

Оказывается, что все известные четыре типа взаимодействий – гравитационное, электромагнитное, сильное и слабое – имеют калибровочную природу и описываются калибровочными симметриями. То есть все взаимодействия как бы сделаны “из одной болванки”. Это вселяет надежду, что можно будет найти “единственный ключ ко всем известным замкам” и описать эволюцию Вселенной из состояния, представленного единым суперсимметричным суперполем, из состояния, в котором различия между типами взаимодействий, между всевозможными частицами вещества и квантами полей еще не проявлены.

Существует огромное число способов классификации элементарных частиц. Так, например, частицы разделяют на фермионы (Ферми-частицы) – частицы вещества и бозоны (Бозе-частицы) – кванты полей.

Согласно другому подходу, частицы разделяют на 4 класса: фотоны, лептоны, мезоны, барионы.

Фотоны (кванты электромагнитного поля) участвуют в электромагнитных взаимодействиях, но не обладают сильным, слабым, гравитационным взаимодействиями.

Лептоны получили свое название от греческого слова l eptos – легкий. К их числу относятся частицы, не обладающие сильным взаимодействием мюоны (μ – , μ +), электроны (е – , е +),электронные нейтрино (v e – ,v e +) и мюонные нейтрино (v – m ,v + m). Все лептоны имеют спин, равный ½, и, следовательно, являются фермионами. Все лептоны обладают слабым взаимодействием. Те из них, которые имеют электрический заряд (то есть мюоны и электроны), обладают также электромагнитным взаимодействием.

Мезоны – сильно взаимодействующие нестабильные частицы, не несущие так называемого барионного заряда. К их числу принадлежитр -мезоны, или пионы (π + , π – , π 0),К -мезоны, или каоны (К + , К – , К 0), иэта -мезоны (η). МассаК -мезонов составляет ~970mе (494 МэВ для заряженных и 498 МэВ для нейтральныхК -мезонов). Время жизниК -мезонов имеет величину порядка 10 –8 с. Они распадаются с образованиемя -мезонов и лептонов или только лептонов. Массаэта -мезонов равна 549 МэВ (1074mе), время жизни – порядка 10 –19 с.Эта -мезоны распадаются с образованием π-мезонов и γ-фотонов. В отличие от лептонов, мезоны обладают не только слабым (и, если они заряжены, электромагнитным), но также и сильным взаимодействием, проявляющимся при взаимодействии их между собой, а также при взаимодействии между мезонами и барионами. Спин всех мезонов равен нулю, так что они являются бозонами.

Класс барионов объединяет в себе нуклоны (p,n) и нестабильные частицы с массой больше массы нуклонов, получившие название гиперонов. Все барионы обладают сильным взаимодействием и, следовательно, активно взаимодействуют с атомными ядрами. Спин всех барионов равен ½, так что барионы являются фермионами. За исключением протона, все барионы нестабильны. При распаде барионов, наряду с другими частицами, обязательно образуется барион. Эта закономерность является одним из проявленийзакона сохранения барионного заряда .

Кроме перечисленных выше частиц обнаружено большое число сильно взаимодействующих короткоживущих частиц, которые получили название резонансов . Эти частицы представляют собой резонансные состояния, образованные двумя или большим числом элементарных частиц. Время жизни резонансов составляет всего лишь ~ 10 –23 –10 –22 с.

Элементарные частицы, а также сложные микрочастицы удается наблюдать благодаря тем следам, которые они оставляют при своем прохождении через вещество. Характер следов позволяет судить о знаке заряда частицы, ее энергии, импульсе и т. п. Заряженные частицы вызывают ионизацию молекул на своем пути. Нейтральные частицы следов не оставляют, но они могут обнаружить себя в момент распада на заряженные частицы или в момент столкновения с каким-либо ядром. Следовательно, в конечном счете нейтральные частицы также обнаруживаются по ионизации, вызванной порожденными ими заряженными частицами.

Частицы и античастицы . В 1928 г. английскому физику П. Дираку удалось найти релятивистское квантово-механическое уравнение для электрона, из которого вытекает ряд замечательных следствий. Прежде всего, из этого уравнения естественным образом, без каких-либо дополнительных предположений, получаются спин и числовое значение собственного магнитного момента электрона. Таким образом, выяснилось, что спин представляет собой величину одновременно и квантовую, и релятивистскую. Но этим не исчерпывается значение уравнения Дирака. Оно позволило также предсказать существование античастицы электрона –позитрона . Из уравнения Дирака получаются для полной энергии свободного электрона не только положительные, но и отрицательные значения. Исследования уравнения показывают, что при заданном импульсе частицы существуют решения уравнения, соответствующие энергиям:.

Между наибольшей отрицательной энергией (–m е с 2) и наименьшей положительной энергией (+m e c 2) имеется интервал значений энергии, которые не могут реализоваться. Ширина этого интервала равна 2m е с 2 . Следовательно, получаются две области собственных значений энергии: одна начинается с + m e с 2 и простирается до +∞, другая начинается с –m е с 2 и простирается до –∞.

Частица с отрицательной энергией должна обладать очень странными свойствами. Переходя в состояния со все меньшей энергией (то есть с увеличивающейся по модулю отрицательной энергией), она могла бы выделять энергию, скажем, в виде излучения, причем, поскольку |Е | ничем не ограничен, частица с отрицательной энергией могла бы излучать бесконечно большое количество энергии. К аналогичному выводу можно прийти следующим путем: из соотношенияЕ =m е с 2 вытекает, что у частицы с отрицательной энергией масса будет также отрицательна. Под действием тормозящей силы частица с отрицательной массой должна не замедляться, а ускоряться, совершая над источником тормозящей силы бесконечно большое количество работы. Ввиду этих трудностей следовало, казалось бы, признать, что состояние с отрицательной энергией нужно исключить из рассмотрения как приводящее к абсурдным результатам. Это, однако, противоречило бы некоторым общим принципам квантовой механики. Поэтому Дирак выбрал другой путь. Он предложил, что переходы электронов в состояния с отрицательной энергией обычно не наблюдаются по той причине, что все имеющиеся уровни с отрицательной энергией уже заняты электронами.

Согласно Дираку, вакуум есть такое состояние, в котором все уровни отрицательной энергии заселены электронами, а уровни с положительной энергией свободны. Поскольку заняты все без исключения уровни, лежащие ниже запрещенной полосы, электроны на этих уровнях никак себя не обнаруживают. Если одному из электронов, находящихся на отрицательных уровнях, сообщить энергию Е ≥ 2m е с 2 , то этот электрон перейдет в состояние с положительной энергией и будет вести себя обычным образом, как частица с положительной массой и отрицательным зарядом. Эта первая из предсказанных теоретически частиц была названа позитроном. При встрече позитрона с электроном они аннигилируют (исчезают) – электрон переходит с положительного уровня на вакантный отрицательный. Энергия, соответствующая разности этих уровней, выделяется в виде излучения. На рис. 4 стрелка 1 изображает процесс рождения пары электрон-позитрон, а стрелка 2 – их аннигиляцию Термин “аннигиляция” не следует понимать буквально. По существу, происходит не исчезновение, а превращение одних частиц (электрона и позитрона) в другие (γ-фотоны).

Существуют частицы, которые тождественны со своими античастицами (то есть не имеют античастиц). Такие частицы называются абсолютно нейтральными. К их числу принадлежат фотон, π 0 -мезон и η-мезон. Частицы, тождественные со своими античастицами, не способны к аннигиляции. Это, однако, не означает, что они вообще не могут превращаться в другие частицы.

Если барионам (то есть нуклонам и гиперонам) приписать барионный заряд (или барионное число) В = +1, антибарионам – барионный заряд В = –1, а всем остальным частицам – барионный зарядВ = 0, то для всех процессов, протекающих с участием барионов и антибарионов, будет характерно сохранение барионов заряда, подобно тому как для процессовхарактерно сохранение электрического заряда. Закон сохранения барионного заряда обусловливаетстабильность самого мягкого из барионов – протона. Преобразование всех величин, описывающих физическую систему, при котором все частицы заменяются античастицами (например, электроны протонами, а протоны электронами и т. д.), называется зарядом сопряжения.

Странные частицы. К -мезоны и гипероны были обнаружены в составе космических лучей в начале 50-х гг.XXв. Начиная с 1953 г. их получают на ускорителях. Поведение этих частиц оказалось столь необычным, что они были названы странными. Необычность поведения странных частиц заключалась в том, что рождались они явно за счет сильных взаимодействий с характерным временем порядка 10 –23 с, а времена жизни их оказались порядка 10 –8 –10 –10 с. Последнее обстоятельство указывало на то, что распад частиц осуществляется в результате слабых взаимодействий. Было совершенно непонятно, почему странные частицы живут так долго. Поскольку и в рождении, и в распаде λ-гиперона участвуют одни и те же частицы (π-мезоны и протон), представлялось удивительным, что скорость (то есть вероятность) обоих процессов столь различна. Дальнейшие исследования показали, что странные частицы рождаются парами. Это навело на мысль, что сильные взаимодействия не могут играть роли в распаде частиц вследствие того, что для их проявления необходимо присутствие двух странных частиц. По той же причине оказывается невозможным одиночное рождение странных частиц.

Чтобы объяснить запрет одиночного рождения странных частиц, М. Гелл-Манн и К. Нишиджима ввели в рассмотрение новое квантовое число, суммарное значение которого должно, по их предположению, сохраняться при сильных взаимодействиях. Это квантовое число S было названостранностью частицы . При слабых взаимодействиях странность может не сохраняться. Поэтому она приписывается только сильно взаимодействующим частицам – мезонам и барионам.

Нейтрино. Нейтрино – единственная частица, которая не участвует ни в сильных, ни в электромагнитных взаимодействиях. Исключая гравитационное взаимодействие, в которомучаствуют все частицы, нейтрино может принимать участие лишь в слабых взаимодействиях.

Долгое время оставалось неясным, чем отличается нейтрино от антинейтрино. Открытие закона сохранения комбинированной четности дало возможность ответить на этот вопрос: они отличаются спиральностью. Под спиральностью понимается определенное соотношение между направлениями импульсаР и спинаS частицы. Спиральность считается положительной, если спин и импульс имеют одинаковое направление. В этом случаенаправление движения частицы (Р ) и направление “вращения”, соответствующего спину, образуют правый винт. При противоположно направленных спине и импульсе спиральность будет отрицательной (поступательное движение и “вращение” образуют левый винт). Согласно развитой Янгом, Ли, Ландау и Саламом теории продольного нейтрино, все существующие в природе нейтрино, независимо от способа их возникновения, всегда бывают полностью продольно поляризованы (то есть спин их направлен параллельно или антипараллельно импульсу Р ). Нейтрино имеет отрицательную (левую) спиральность (ему соответствует соотношение направлений S и Р , изображенное на рис. 5 (б), антинейтрино – положительную (правую) спиральность (а). Таким образом, спиральность – это то, что отличает нейтрино от антинейтрино.

Рис. 5. Схема спиральности элементарных частиц

Систематика элементарных частиц. Закономерности, наблюдаемые в мире элементарных частиц, могут быть сформулированы в виде законов сохранения. Таких законов накопилось уже довольно много. Некоторые из них оказываются не точными, а лишь приближенными. Каждый закон сохранения выражает определенную симметрию системы. Законы сохранения импульсаР , момента импульсаL и энергииЕ отражают свойства симметрии пространства и времени: сохранениеЕ есть следствие однородности времени, сохранениеР обусловлено однородностью пространства, а сохранениеL – его изотропностью. Закон сохранения четности связан с симметрией между правым и левым (Р -инвариантность). Симметрия относительно зарядового сопряжения (симметрия частиц и античастиц) приводит к сохранению зарядовой четности (С -инвариантность). Законы сохранения электрического, барионного и лептонного зарядов выражают особую симметриюС -функции. Наконец, закон сохранения изотопического спина отражает изотропность изотопического пространства. Несоблюдение одного из законов сохранения означает нарушение в данном взаимодействии соответствующего вида симметрии.

В мире элементарных частиц действует правило: разрешено все, что не запрещают законы сохранения . Последние играют роль правил запрета, регулирующих взаимопревращения частиц. Прежде всего отметим законы сохранения энергии, импульса и электрического заряда. Эти три закона объясняют стабильность электрона. Из сохранения энергии и импульса следует, что суммарная масса покоя продуктов распада должна быть меньше массы покоя распадающейся частицы. Значит, электрон мог бы распадаться только на нейтрино и фотоны. Но эти частицы электрически нейтральны. Вот и получается, что электрону просто некому передать свой электрический заряд, поэтому он стабилен.

Кварки. Частиц, называемых элементарными, стало так много, что возникли серьезные сомнения в их элементарности. Каждая из сильно взаимодействующих частиц характеризуется тремя независимыми аддитивными квантовыми числами: зарядомQ , гиперзарядомУ и барионным зарядомВ . В связи с этим появилась гипотеза о том, что все частицы построены из трех фундаментальных частиц – носителей этих зарядов. В 1964 г. Гелл-Манн и независимо от него швейцарский физик Цвейг выдвинули гипотезу, согласно которой все элементарные частицы построены из трех частиц, названных кварками. Этим частицам приписываются дробные квантовые числа, в частности, электрический заряд, равный +⅔; –⅓; +⅓ соответственно для каждого из трех кварков. Эти кварки обычно обозначаются буквамиU ,D ,S . Кроме кварков, рассматриваются антикварки (u ,d ,s). На сегодняшний день известно 12 кварков – 6 кварков и 6 антикварков. Мезоны образуются из пары кварк-антикварк, а барионы – из трех кварков. Так, например, протон и нейтрон состоят из трех кварков, что делает протон или нейтрон бесцветными. Соответственно различают три заряда сильных взаимодействий – красный (R ), желтый (Y ) и зеленый (G ).

Каждому кварку приписывается одинаковый магнитный момент (мкВ), величина которого из теории не определяется. Расчеты, произведенные на основании такого предположения, дают для протона значение магнитного момента μ p = μ кв, а для нейтрона μ n = – ⅔μ кв.

Таким образом, для отношения магнитных моментов получается значение μ p / μ n = –⅔, превосходно согласующееся с экспериментальным значением.

В основном цвет кварка (подобно знаку электрического заряда) стал выражать различие в свойстве, определяющем взаимное притяжение и отталкивание кварков. По аналогии с квантами полей различных взаимодействий (фотонами в электромагнитных взаимодействиях,р -мезонами в сильных взаимодействиях и т. д.) были введены частицы-переносчики взаимодействия между кварками. Эти частицы были названыглюонами . Они переносят цвет от одного кварка к другому, в результате чего кварки удерживаются вместе. В физике кварков сформулирована гипотеза конфайнмента (от англ.confinements – пленение) кварков, согласно которой невозможно вычитание кварка из целого. Он может существовать лишь в качествеэлемента целого. Существование кварков как реальных частиц в физике надежно обосновано.

Идея кварков оказалась весьма плодотворной. Она позволила не только систематизировать уже известные частицы, но и предсказать целый ряд новых. Положение, сложившееся в физике элементарных частиц, напоминают положение, создавшееся в физике атома после открытия в 1869 г. Д. И. Менделевым периодического закона. Хотя сущность этого закона была выяснена только спустя примерно 60 лет после создания квантовой механики, он позволил систематизировать известные к тому времени химические элементы и, кроме того, привел к предсказанию существования новых элементов и их свойств. Точно так же физики научились систематизировать элементарные частицы, причем разработанная систематика вряде случаев позволила предсказать существование новых частиц и предвосхитить их свойства.

Итак, в настоящее время истинно элементарными можно считать кварки и лептоны; их 12, или вместе с античатицами – 24. Кроме того, существуют частицы, обеспечивающие четыре фундаментальные взаимодействия (кванты взаимодействия). Этих частиц 13: гравитон, фотон, W ± - иZ -частицы и 8 глюонов.

Существующие теории элементарных частиц не могут указать, что является началом ряда: атомы, ядра, адроны, кваркиВ этом ряду каждая более сложная материальная структура включает более простую как составную часть. По-видимому, так бесконечно продолжаться не может. Предположили, что описанная цепочка материальных структур базируется на объектах принципиально иной природы. Показано, что такими объектами могут быть не точечные, а протяженные, хотя и чрезвычайно малые (~10 ‑33 см) образования, названныесуперструнами. Описанная идея в нашем четырехмерном пространстве не реализуема. Данная область физики вообще чрезвычайно абстрактна, и очень трудно подобрать наглядные модели, помогающие упрощенному восприятию идей, заложенных в теориях элементарных частиц. Тем не менее, эти теории позволяют физикам выразить взаимопревращение и взаимообусловленность “наиболее элементарных” микрообъектов, их связь со свойствами четырехмерного пространства-времени. Наиболее перспективной считается так называемаяМ-теория (М – отmystery – загадка, тайна). Она оперируетдвенадцатимерным пространством . В конечном итоге при переходе к непосредственно воспринимаемому нами четырехмерному миру все “лишние” измерения “сворачиваются”. М-теория пока единственная теория, которая дает возможность свести четыре фундаментальные взаимодействия к одному – так называемойСуперсиле. Важно также, что М-теория допускает существование разных миров и устанавливает условия, обеспечивающие возникновение нашего мира. М-теория еще недостаточно разработана. Считается, что окончательная«теория всего» на основе М-теории будет построена вXXIв.

– материальные объекты, которые нельзя разделить на составные части. В соответствии с этим определением к элементарным частицам не могут быть отнесены молекулы, атомы и атомные ядра, которые поддаются делению на составные части – атом делится на ядро и орбитальные электроны, ядро – на нуклоны. В то же время нуклоны, состоящие из более мелких и фундаментальных частиц – кварков, нельзя разделить на эти кварки. Поэтому нуклоны относят к элементарным частицам. Учитывая то обстоятельство, что нуклон и другие адроны имеют сложную внутреннюю структуру, состоящую из более фундаментальных частиц – кварков, более целесообразно адроны называть не элементарными частицами, а просто частицами.
Частицы имеют размеры меньшие, чем атомные ядра. Размеры ядер 10 -13 − 10 -12 см. Наиболее “крупные” частицы (к ним относятся и нуклоны) состоят из кварков (двух или трёх) и называются адронами. Их размеры ≈ 10 -13 см. Существуют также бесструктурные (на современном уровне знаний) точечноподобные (< 10 -17 см) частицы, которые называют фундаментальными. Это кварки, лептоны, фотон и некоторые другие. Всего известно несколько сот частиц. Это в подавляющем большинстве адроны.

Таблица 1

Фундаментальные фермионы

Взаимодействия

Поколения Заряд
Q/e
лептоны ν е ν μ ν τ
e μ τ
кварки c t +2/3
s b -1/3

Фундаментальными частицами являются 6 кварков и 6 лептонов (табл. 1), имеющих спин 1/2 (это фундаментальные фермионы) и несколько частиц со спином 1 (глюон, фотон, бозоны W ± и Z), а также гравитон (спин 2), называемые фундаментальными бозонами (табл. 2). Фундаментальные фермионы делятся на три группы (поколения), в каждой из которых 2 кварка и 2 лептона. Из частиц первого поколения (кварки u, d, электрон е −) состоит вся наблюдаемая материя: из кварков u и d состоят нуклоны, из нуклонов состоят ядра. Ядра с электронами на орбитах образуют атомы и т.д.

Таблица 2

Фундаментальные взаимодействия
Взаимодействие Квант поля Радиус, см Константа взаимодействия
(порядок величины)
Пример
проявления
сильное глюон 10 -13 1 ядро, адроны
электромагнитное γ-квант 10 -2 атом
слабое W ± , Z 10 -16 10 -6 γ-распад
гравитационное гравитон 10 -38 сила тяжести

Роль фундаментальных бозонов в том, что они реализуют взаимодействие между частицами, являясь “переносчиками” взаимодействий. В процессе различных взаимодействий частицы обмениваются фундаментальными бозонами. Частицы участвуют в четырёх фундаментальных взаимодействиях – сильном (1), электромагнитном (10 -2), слабом (10 -6) и гравитационном (10 -38). В скобках указаны цифры, характеризующие относительную силу каждого взаимодействия в области энергий меньше 1 ГэВ. Кварки (и адроны) участвуют во всех взаимодействиях. Лептоны не участвуют в сильном взаимодействии. Переносчиком сильного взаимодействия является глюон (8 типов), электромагнитного – фотон, слабого – бозоны W ± и Z, гравитационного – гравитон.
Подавляющее число частиц в свободном состоянии нестабильно, т.е. распадается. Характерные времена жизни частиц 10 -24 –10 -6 сек. Время жизни свободного нейтрона около 900 сек. Электрон, фотон, электронное нейтрино и возможно протон (и их античастицы) – стабильны.
Основой теоретического описания частиц является квантовая теория поля. Для описания электромагнитных взаимодействий используется квантовая электродинамика (КЭД), слабое и электромагнитное взаимодействие совместно описываются объединённой теорией – электрослабой моделью (ЭСМ), сильное взаимодействие – квантовой хромодинамикой (КХД). КХД и ЭСМ, совместно описывающие сильное, электромагнитное и слабое взаимодействия кварков и лептонов, образуют теоретическую схему, называемую Стандартной Моделью.

На современном уровне знаний у электронов и др. (см. ниже), а также у кварков внутр. структура не обнаружена, хотя и существуют теоретич. модели, согласно к-рым и лептоны, и кварки построены из более фундаментальных кирпичиков мироздания - преонов (этот термин, впрочем, пока не является общепринятым).

Исторически первыми экспериментально обнаруженными Э.ч. были электрон, протон, а затем нейтрон. Казалось, что совокупности этих частиц и кванта эл.-магн. поля фотона достаточно для построения известных форм вещества (атомов и молекул). Вещество при таком подходе строилось из протонов, нейтронов и электронов, а эл.-магн. поле (фотоны) осуществляло взаимодействие между ними. Однако вскоре выяснилось, что мир устроен значительно сложнее. Было установлено, что для каждой частицы имеется своя , отличиющаяся от нее лишь знаком зарядов (см. ниже); для частиц с нулевыми значениями всех зарядов античастица совпадает с частицей (пример - фотон). Далее, с развитием экспериментальной ядерной физики, к перечисленным выше четырем (или с учетом античастиц - семи) частицам прибавилось еще свыше 300 частиц. Можно считать установленным, что большинство этих частиц построено из кварков, число к-рых равно 6 (или 12 с учетом антикварков).

Еще одним важнейшим достижением физики микромира стало открытие, что Э.ч. присуще не только эл.-магн. взаимодействие. С изучением строения атомных ядер выяснилось, что силы, удерживающие протоны и нейтроны в ядре, не являются электромагнитными.

Характерное для нуклонов (протонов и нейтронов в ядре) взаимодействие получило название сильного. Оно оказалось короткодействующим - на расстояниях r , превышающих 10 -13 см, сильное взаимодействие пренебрежимо мало. Однако при r Ядерные силы ). Открытие нестабильности нейтрона и нек-рых атомных ядер указало на существование еще одного типа взаимодействия, названного слабым. Тремя перечисленными выше типами взаимодействий, а также гравитационным взаимодействием (см. ) исчерпываются известные типы фундаментальных физ. взаимодействий. Существует точка зрения, что все 4 (или хотя бы 3) типа взаимодействий представляют собой явления одной природы и должны описываться единым образом.

Единая теория слабых и эл.-магн. взаимодействий уже построена и подтверждена опытом; имеются теоретические модели, единообразно описывающие все типы взаимодействий (см. ).

2. Классификация элементарных частиц

Табл. 1. Элементарные частицы (Q - Электрич. заряд, L - Лептонный заряд, B - Барионный заряд, S - Странность, C - Очарование).

Тип частицы Символ Масса m , МэВ Спин,
в ед.
Время
жизни, с
Q L B S C
Лептоны e - 0,511 1/2 align="absmiddle" width="65" height="15"> -1 1 0 0 0
стабильно 3) 0
105 -1
стабильно 3) 0
1784 -1
стабильно 3) 0
Мезоны-
переносчики
взаимодействия
0 1 стабилен 0 0 0 0 0
W
Z 0 0
глюон 5) 0 6) стабилен 6) 0
Мезоны
(адроны)
135 0 0 0 0 0 0
140 +1 0 0
K 0 498 0 +1 0
K + 494 +1 +1 0
D 0 1864 0 0 +1
D + 1869 ~ 10 -12 +1 0 +1
F + 2020 +1 -1 +1
Барионы 8) (адроны) p 938,3 1/2 >10 38 +1 0 1 0 0
n 939,6 900 0 0 0
1115 0 -1 0
1189 +1 -1 0
1192 0 -1 0
1197 -1 -1 0
1315 0 -2 0
1321 -1 -2 0
1672 -1 -3 0
2280 ~ 10 -13 +1 0 1
Примечания к табл.:
1) Кроме частиц, приведенных в таблице, имеется большое число короткоживущих частиц, т.н. резонансов, обладающих временем жизни ~ 10 -20 -10 -24 с. Для приведенных частиц в таблице частиц не указаны их античастицы, имеющие те же значения массы, времени жизни, но противоположные знаки квантовых чисел Q, L, B, S, C .
2) Полагают, что , хотя спец. оснований для этого нет; возможно, .
3) Если , то естественно ожидать, что нейтрино нестабильны, хотя их время жизни может быть очень велико.
4) Приведена теоретич. оценка.
5) Глюон как свободная частица не существует.
6) Теоретич. оценка.
7) K 0 - и -мезоны не обладают определенным временем жизни.
8) Должны существовать барионы с большими значениями C (до 3), а также с ненулевыми значениями C и S одновременно; обнаружен мезон ( ГэВ), у к-рого не равно нулю квантовое число ("красота"), приписываемое b -кварку.

В зависимости от характера взаимодействия Э.ч. подразделяются на неск. больших групп (табл. 1). Э.ч., к-рым присуще сильное взаимодействие, наз. . К адронам относятся протоны, нейтроны и более тяжелые частицы гипероны (все они объединены общим названием ), а также большое семество . Частицы, не участвующие в сильном взаимодействии, наз. . Сюда относятся помимо электрона два других заряженных лептона: мюон и тау-лептон ("тяжелый лептон"), к-рые соответственно в 210 и 3600 раз массивней электрона. Каждому заряженному лептону отвечает нейтральная частица - (электронное, мюонное или тау). Масса нейтрино равна нулю или весьма мала. Известно 6 (с античастицами 12) типов лептонов. Нйетральные лептоны участвуют только в слабом взаимодействии; зареженные - с слабом и электромагнитном. У нейтральных лептонов, впрочем, могут быть очень малые магн. моменты. Адроны участвуют в сильном, слабом и эл.-магн. взаимодействиях. И, разумеется, все частицы взаимодействуют гравитационно. Кроме перечисленных, имеются частицы - переносчики взаимодействий: фотон (переносчик эл.-магн. взаимодействия), W- и Z 0 -бозоны (переносчики слабого взаимодействия). Считается, что существует переносчик гравитац. взаимодействия - гравитон.

Э.ч. характеризуются своей массой, электрическим зарядом, собственным моментом количества движения - .

Массы легчайших частиц (таких, как фотоны) равны нулю, а массы наиболее тяжелых из известных частиц в 100 раз превышают массу протона. Электрич. заряд Э.ч. представляет собой целое кратное заряда электрона. Срин частиц бывает лтбо целым (0, 1, 2, ...) - в этом случае они называются бозонами, либо полуцелым (1/2, 3/2, ...) - в этом случае их называют фермионами.

Лептонам приписывают т.н. лептонный заряд L , принимаемый равным +1 для частиц и -1 для их античастиц. Введение этого заряда обосновано тем, что во всех процессах, происходящих в замкнутой системе, полное число лептонов минут число антилептонов сохраняется. Кроме того, каждая пара лептонов обладает своим специальным лнптонным зарядом, соответственно . Введение этих зарядов отражает то обстоятельство, что, напр., электронное нейтрино, налетая на нейтрон, может родить электрон, но не мюон или -лептон. Значения равны +1 для указанных пар лептонов и -1 для их античастиц. Сейчас, однако, широко обсуждается возможность того, что свободное нейтрино со временем может изменять свой лептонный заряд, превращаясь в нейтрино другого типа (нейтринные осцилляции). В результате на разных расстояниях от места своего рождения нейтрино способно рождать заряженные лептоны различного типа.

Барионам, подобно лептонам, приписывается свой сохраняющийся барионный заряд B . Природа сохранения лептонного и барионного зарядов до конца не ясна. Более того, модели великого объединения предсказывают, что это сохранение явл. лищь приближенным, хотя обнаружение возможного нарушения сохранения находится, по-видимому, на грани или за пределами совр. экспериментальных возможностей. Все известные лептоны и барионы явл. фермионами. Мезоны не имеют ни барионного, ни лептонного заряда и явл. бозонами. Кроме того, адронамприписывают специфические квантовые числа (заряды), называемые странностью (S ), очарованием (C ) и т.п., к-рые, в отличие от B и L , не сохраняются в слабых взаимодействиях, сохраняясь в сильных и электромагнитных. В силу этого легчайшие частицы с (или ), являясь нестабильными, имеют довольно большое время жизни в масштабах мира Э.ч. (см. табл. 1), т.к. к их распаду может привести только слабое взаимодействие.

3. Кварковая модель строения адронов

Все адроны, согласно совр. представлениям, построены из более фундаментальных частиц - кварков (q ). Как и лептоны, кварки явл. фермионами, их спин равен 1/2, электрич. заряд +2/3 и -1/3 (в ед. заряда электрона), заряд антикварков -2/3 и +1/3, у всех кварков барионный заряд B =1/3, лептонный заряд L =0. Аналогично лептону кварки также группируются в пары. Причем, по-видимому, имеет место кварк-лептонная симметрия: каждой паре лептонов отвечает пара кварков (см. табл. 2). Паре (e,) отвечают кварки, обозначаемые (u,d). Это самые легкие кварки, их масса составляет 5-10 МэВ, их странность, очарование и др. подобные квантовые числа равны нулю. Из трех таких кварков можно построить нуклоны, т.е. протон и нейтрон: p=(uud ), n=(udd ). Др. возможные тройки этих кварков также реализуются в природе, образуя более тяжелые частицы, напр. частицу со спином 3/2 и массой 1240 МэВ. Из пары кварк-антикварк строятся мезоны, в частности легчайший из известных мезонов -мезон: ), ) и , представляющие собой смесь и .

Четверка частиц (u,d ,,e) образуют т.н. первое кварк-лептонное поколение. Известно еще два поколения (c,s , ) и (t,b ,) (см. табл. 2), сожержащие более массивные частицы.

Табл. 2. Кварки и лептоны.

I поколение II поколение III поколение
Обозначения u d e c s t b
Электический заряд в ед. заряда электрона +2/3 -1/3 0 -1 +2/3 -1/3 0 -1 +2/3 -1/3 0 -1
Масса, МэВ 0,5 1200 150 105 1784

По-видимому, данные космологии говорият об отсутствии последующих кварк-лептонных поколений (см. ниже). С др. стороны, трех поколений частиц оказывается достаточно для теоретич. объяснения различия св-в частиц и античастиц. Каждый из тяжелых кварков (c,s и t,b ) обладает соответственно своим квазисохраняющимся квантовым числом C, S или T, B . Поскольку S наз. странностью, и s-кварк наз. странным; C наз. очарованием, B - красотой, для T термин пока не истановился. Частицы, в состав к-рых входит s -кварк, наз. странными. Заменяя теоретически один, два или три кварка в нуклоне, моно объяснить существование всех открытых странных барионов - гиперонов (см. табл. 1). Аналогично при замене u - или d -кварка в -мезоне на s -кварк модно получить обнаруженный в природе странный К-мезоны. Точно также наблюдаемые очарованные частицы (с ) имеют в своем составе с -кварк и т.д. В принципе возможны связанные состояния всех шести типов кварков между собой, но на опыте пока наблюдается лишь часть из них. Однако все открытые адроны можно описать как связанные состояния этих шести кварков.

Каждый кварк имеет квантовое число, называемое цветом. Цвет явл. аналогом электрич. заряда, хотя и более сложным. Наличие цвета объясняет сильное взаимодействие кварков, отсутствующее у не имеющих цвета лептонов.

Аналогично тому, как электрические заряды взаимодействуют посредством фотонов, так взаимодействие цветовых зарядов осуществляют переносчики сильного взаимодействия - глюоны. Однако в отличие от единственного фотона, имеется восемь различных типов глюонов. Др. существенное отличие состоит в том, что фотон не имеет электрич. заряда и поэтому сам с собой не взаимодействует, а глюоны, обладая цветовым зарядом, взаимодействуют друг с другом. По-видимому, в этом лежит причина принципиально нового явления, называемого конфайнментом или невылетанием кварков. Дело в том, что, несмотря на достаточно большие энергии частиц, ускоренных в совр. ускорителях, кварки наблюдать в свободном состоянии не удается. Они, по-видимому, существуют в природе только в виде пар кварк-антикварк (), троек (qqq ) или более сложных образований, но обязательно таких, чтобы электрич. заряд этих объектов оказывался целочисленным. Все подобные объекты обладают нулевым цветовым зарядом. Если говорить очень упрощенно, то явление конфайнмента состояит в следующем. При попытке получить кварк в свободном состоянии (т.е. "вытащить" его из адрона на достаточно большое расстояние, сообщив ему высокую энергию) напряженность поля нескомпенсированного цветового заряда кварка оказывается столь сильной, что за счет сообщенной энергии из вакуума рождается пара и антикварк движется вместе с кварком, к-рый пытаются оторвать. В результате вылетает не кварк, а составная частица, не имеющая цвета. По этой же причине глюоны также не удается наблюдать в свободном состоянии. Явление конфайнмента обусловливает малый радиус действия сильного взаимодействия.

Область физики элементарных частиц, изучающая взаимодействие кварков и глюонов, носит название квантовой хромодинамики. Квантовая хромодинамика явл. теорией сильного взаимодействия Э.ч.

Т.о., на совр. уровне понимания элементарности фундаментальными составляющими материи явл. 6 лептонов (с античастицами 12), 6х3=18 кварков (с античастицами 36), а также переносчики взаимодействия: сильного - 8 глюонов, электромагнитного - фотон, слабого - W- и Z 0 -бозоны. Лептоны и кварки имеют спин 1/2, а переносчики взаимодействия - спин, равный 1, их называют векторными бозонами. Существование всех перечисленных частиц подтверждается экспериментом. Помимо этого теория требует существования постоянного во всем пространстве скалярного поля, с к-рым различные лептоны и кварки взаимодействуют по-разному, что определяет различие их масс. Кванты скалярного поля представляют собой новые, предсказываемые теорией Э.ч. снулевым спином. Их называют хиггсовскими бозонами (по имени англ. физика П. Хиггса, 1964 г., предложившего их существование). Число хиггсовских бозонов может достигать неск. десятков. Взаимодействие W- и Z 0 -бозонов со скалярным полем обусловливает значит. массу этих частиц и малый радиус слабого взаимодействия. Хиггсовские бозоны пока е обнаружены на опыте. Более того, ряд физиков считает их существование необязательным, однако полноценной теоретической схемы без хиггсовских бозонов пока не найдено.

Модели великого объединения требуют введения дополнительных векторных частиц - переносчиков взаимодействия адронов с лептонами. В простейшем варианте таких частиц должно быть 12 с массой m ~ 10 14 -10 15 ГэВ. Получить и изучить экспериментально такие частицы пока невозможно, т.к. масса находится далеко за пределами энергий, достижимых на ускорителях как существующих конструкций, так и вообще мыслимых. При взаимодействиях с этими векторными бозонами не сохраняется ни барионный, ни лептонный заряд. Снова число частиц на новом уровне элементарности приближается или даже превосходит сотню. Впрочем, большое количество новых частиц требуется лишь теорией, но не опытом, и, возможно, иные, пока неизвестные теоретич. схемы позволят обойтись без особого множества уже известных частиц.

Рост количества фундаментальных Э.ч. заставил теоретиков искать модели, в к-рых все семейства кварков и лептонов, а также частицы - переносчики взаимодействия и хиггсовские бозоны рассматривались бы как составные из каких-то более фундаментальных объектов; одно из названий, предлагаемых для последних, - преоны.

Осн. трудность, стоящая перед теорией преонов, состояит в том, что масса объектов m , составленных из преонов, должна быть мала по сравнению с обратным размером этих объектов r -1 . В др. стороны, согласно квантовой механике, вообще говоря, должно выполнятся условие . Удовлетворительного решения этой проблемы пока нет. В то же время, совершенно необязательно структура материи должна напоминать игрушку "матрешку", нельзя исключить, что лептоны и кварки есть и навсегда останутся последним этапом в дроблении вещества. Решающее слово здесь должно принадлежать эксперименту. К сожалению, эксперименты на существующих ускорителях не могут дать ответа на постановленные вопросы.

4. Элементарные частицы и космология

В первичной плазме находились все Э.ч., рождение к-рых могло происходить при данной темп-ре плазмы. С расширением Вселенной темп-ра T плазмы падала, наиболее массивные частицы переставали рождаться, а их приводила к тому, что число массивных стабильных Э.ч. и античастиц в элементе т.н. сопутствующего объема (т.е. расширяющегося в темпе расширения Вселенной) убывало пропорционально exp(mc 2 kT ). Если бы такой закон уменьшения концентрации Э.ч. продолжался до настоящего времени (до К), то практически никаких следов Э.ч., рожденных на ранних стадиях эволюции вселенной, сейчас не осталось бы. Однако когда концентрация таких частиц становится достаточно малой, их взаимная аннигиляция прекращается и в дальнейшем концентрация Э.ч. падает только за счет расширения Метагалактики (т.е. остается постоянной в сопутствующем объеме). Это явление наз. закалкой (иногда замораживанием) концентрации. Для слабовзаимодействующих частиц их теперяшняя концентрация должна быть порядка совр. концентрации реликтовых фотонов . Именно такая ситуация имеет место для нейтрино. Расчет показывает, что количество реликтовых нейтрино должно быть весьма велико: (для каждого типа нейтрино). Последнее обстоятельство позволяет получить очень сильное ограничение на массу нейтрино: эВ. Если бы масса всех типов нейтрино превосходила указанный предел, то нейтрино оказывали бы существенное влияние на темп расширения Вселенной и ее возраст, вычисляемый по совр. значению постоянной Хаббла и плотности массы реликтовых нейтрино, оказался бы меньше, чем дают астрофизич. оценки и методы . Доказательство того, что ограничение снизу на возраст Вселенной приводит к ограничению сверху на массы нейтрино, было дано С.С. Герштейном и Я.Б. Зельдовичем (1966 г.) и инициировало применение космологич. методов к физике Э.ч.

Данные космологии позволяют заключить также, что количество различных нейтрино не может быть произвольно велико (В.Ф. Шварцман, 1969 г.). легких элементов (таких, как 4 He и дейтерий) во Вселенной таково, что , т.е. все нейтрино уже открыты. Правда, ряд физиков, не доверяя надежности существующих данных придерживаются иной оценки: . Возможно, скоро количество типов нейтрино станет известно точно, т.к. открытый в 1983 г. Z 0 -бозон слабых взаимодействий должен, согласно теоретич. предсказаниям, распадаться на все типы нейтрино и поэтому измерение его полной вероятности распада позволит определить . Поясним, как по обилию 4 He и 2 H можно определить . Образовались эти элементы на очень ранней стадии развития Вселенной, когда темп-ра первичной плазмы составляла 1 МэВ-100 кэВ (в энергетич. единицах или 10 10 -10 9 К. При такой темп-ре плазма содержала примерно в равном количестве фотоны, все типы нейтрино, электрон-позитронные пары и небольшое количество нуклонов (~ 10 -10 от количества легких частиц). Относительное содержание нейтронов и протонов вначале определяется термодинамическим равновесием и составляет , где =1,3 МэВ - разность масс нейтрона и протона. Переходы np происходят за счет процессов, обусловленных слабым взаимодействием, напр., n+p+e - . По мере раширения Вселенной концентрации частиц падают и скорость реакций np-переходов становится меньше скорости расширения, происходит закалка отношения концентраций n и p, т.е. величина N n /N p становится постоянной, если пренебречь медленным распадом енйтронов. Эта величина определяет относительное содержание (обилие) 4 He, т.к. за счет водородной цепочки практически все нейтроны связываются в ядра 4 He. Очевидно, что чем выше темп расширения и охлаждения, темвыше темп-ра закалки и соответственно выше отношение N n /N p . Можно показать, что чем больше число различных типов частиц в первичной плазме, тем выше темп расширения при данной темп-ре, поэтому добавление новых типов нейтрино в первичную плазму влечет за собой увеличение темп-ры закалки и соответственно увеличение концентрации первичного 4 He. Совр. данные указывают, что доля 4 He (по массе) в веществе Метагалактики составляет 22-25%, что находится в хорошем согласии с теорией при =3. Если бы число типов нейтрино составляло 10-20, количество 4 He достигло бы 40-50%, что совершенно не соответствует данным наблюдений. Расчет, однако, содержит нек-рую неопределенность, связанную с тем, что относительная концентрация нуклонов известна с плохой точностью. По данным о количестве 2 H во Вселенной можно получить такое ограничение на величину f , при к-ром исключается >3. К сожалени, соотношение между современным количеством дейтерия и первичным определено довольно плохо и это оставляет нек-рую лазейку для увеличения числа .

Космология позволяет также делать выводы о частицах и процессах, к-рые находятся далеко за энергетич. пределами, доступными совр. и будущим ускорителям. Ярким примером явл. оценка концентрации магнитнчх монополей - частиц, имеющих элементарный магн. заряд. Существование этих частиц предсказывается моделями великого объединения. Их масса должна быть ~ 10 16 ГэВ, так что ни сейчас, ни в обозримом будущем нет никакой надежды получить эти частицы в лаборатории, подобно тому, как получают, напр., антипротоны, W- и Z 0 -бозоны.

Единственная возможность обнаружить эти частицы состоит в поисках их среди реликтовых частиц. Теоретич. ожидания для концентрации реликтовых монополей, полученные в рамках простейшей модели, противоречат существующим данным наблюдений. Это противоречие послужило одной из предпосылок для создания формулировки модели инфляционной модели Вселенной.

Взаимосвязь физики Э.ч. и космологии особенно укрепилась в последнее время. Сейчас ни одна теоретич. модель взаимодействий Э.ч. не может быть признанной, если она не согласуется с данными космологии. С др. стороны, методы физики Э.ч. позволили решить ряд известных космологических проблем, таких, как проблемы , однородности и изотропии, горизонта Вселенной, близости плотности вещества к критич. значению.


ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ , в узком смысле - частицы, к-рые нельзя считать Состоящими из других частиц. В совр. физике термин "элементарные частицы" используют в более широком смысле: так наз. мельчайшие частицы материи, подчиненные условию, что они не являются атомными ядрами и атомами (исключение составляет протон); иногда по этой причине элементарные частицы называют субъядерными частицами. Большая часть таких частиц (а их известно более 350) являются составными системами.
Э лементарные частицы участвуют в электромагнитном, слабом, сильном и гравитационном взаимодействиях. Из-за малых масс элементарных частиц их гравитационное взаимод. обычно не учитывается. Все элементарные частицы разделяют на три осн. группы. Первую составляют т. наз. бозоны- переносчики электрослабого взаимодействия. Сюда относится фотон, или квант электромагнитного излучения. Масса покоя фотона равна нулю, поэтому скорость распространения электромагнитных волн в вакууме (в т. ч. световых волн) представляет собой предельную скорость распространения физ. воздействия и является одной из фундам. физ. постоянных; принято, что с = (299792458 1,2) м/с.
Вторая группа элементарных частиц - лептоны, участвующие в электромагнитных и слабых взаимодействиях. Известно 6 лептонов: электрон , электронное нейтрино , мюон , мюонное нейтрино , тяжелый-лептон и соответствующее нейтрино . Электрон (символ е) считается материальным носителем наименьшей массы в природе m с, равной 9,1 x 10 -28 г (в энергетич. единицах 0,511 МэВ) и наименьшего отрицат. электрич. заряда е = 1,6 x 10 -19 Кл. Мюоны (символ) - частицы с массой ок. 207 масс электрона (105,7 МэВ) и электрич. зарядом, равным заряду электрона ; тяжелый-лептон имеет массу ок. 1,8 ГэВ. Соответствующие этим частицам три типа нейтрино - электронное (символ v c), мюонное (символ) и-нейтрино (символ) - легкие (возможно, безмассовые) электрически нейтральные частицы.
Все лептоны имеют спин ( - постоянная Планка), т. е. по статистич. св-вам являются фермионами (см. Статистическая термодинамика).
Каждому из лептонов соответствует античастица , имеющая те же значения массы, спина и др. характеристик, но отличающаяся знаком электрич. заряда. Существуют позитрон (символ е +) - античастица по отношению к электрону , положительно заряженный мюон (символ) и три типа антинейтрино (символ), к-рым приписывают противоположный знак особого квантового числа, наз. лептонным зарядом (см. ниже).
Третья группа элементарных частиц,- адроны, они участвуют в сильном, слабом и электромагнитном взаимодействиях. Адроны представляют собой "тяжелые" частицы с массой, значительно превышающей массу электрона . Это наиб. многочисленная группа элементарных частиц. Адроны делятся на барионы - частицы со спином мезоны - частицы с целочисленным спином (О или 1); а также т. наз. резонансы - короткоживущие возбужденные состояния адронов. К барионам относят протон (символ р) - ядро атома водорода с массой, в ~ 1836 раз превышающей m с и равной 1,672648 x 10 -24 г (938,3 МэВ), и положит. электрич. зарядом, равным заряду электрона , а также нейтрон (символ n) - электрически нейтральная частица, масса к-рой немного превышает массу протона . Из протонов и нейтронов построены все ядра атомные , именно сильное взаимод. обусловливает связь этих частиц между собой. В сильном взаимодействии протон и нейтрон имеют одинаковые св-ва и рассматриваются как два квантовых состояния одной частицы - нуклона с изотопич. спином (см. ниже). Барионы включают и гипероны - элементарные частицы с массой больше нуклонной:-гиперон имеет массу 1116 МэВ,-гиперон- 1190 МэВ,-гиперон -1320 МэВ,-гиперон- 1670 МэВ. Мезоны имеют массы, промежуточные между массами протона и электрона (-мезон, K-мезон). Существуют мезоны нейтральные и заряженные (с положит. и отрицат. элементарным электрич. зарядом). Все мезоны по своим сгатистич. св-вам относятся к бозонам.

Основные свойства элементарных частиц. Каждая элементарная частица описывается набором дискретных значений физ. величин (квантовых чисел). Общие характеристики всех элементарных частиц - масса, время жизни, спин , электрич. заряд.
В зависимости от времени жизни элементарные частицы делятся на стабильные, квазистабильные и нестабильные (резонансы). Стабильными (в пределах точности совр. измерений) являются: электрон (время жизни более 5 -10 21 лет), протон (более 10 31 лет), фотон и нейтрино . К квазистабильным относятся частицы, распадающиеся вследствие электромагнитного и слабого взаимод., их времена жизни более 10 -20 с. Резонансы распадаются за счет сильного взаимод., их характерные времена жизни 10 -22 -10 -24 с.
Внутренними характеристиками (квантовыми числами) элементарных частиц являются лептонный (символ L) и барионный (символ В)заряды; эти числа считаются строго сохраняющимися величинами для всех типов фундам. взаимод. Для лептонных нейтрино и их античастиц L имеют противоположные знаки; для барионов В = 1, для соответствующих античастиц В = -1.
Для адронов характерно наличие особых квантовых чисел: "странности", "очарования", "красоты". Обычные (нестранные) адроны - протон , нейтрон ,-мезоны. Внутри разных групп адронов имеются семейства частиц, близких по массе и со сходными св-вами по отношению к сильному взаимод., но с разл. значениями электрич. заряда; простейший пример -протон и нейтрон . Общее квантовое число для таких элементарных частиц - т. наз. изотопич. спин , принимающий, как и обычный спин , целые и полуцелые значения. К особым характеристикам адронов относится и внутренняя четность, принимающая значения1.
Важное св-во элементарных частиц - их способность к взаимопревращениям в результате электромагнитных или др. взаимодействий. Один из видов взаимопревращений - т. наз. рождение пары , или образование одновременно частицы и античастицы (в общем случае - образование пары элементарных частиц с противоположными лептонными или барионными зарядами). Возможны процессы рождения электрон-позитронных пар е - е + , мюонных пар новых тяжелых частиц при столкновениях лептонов, образование из кварков cc- и bb-состояний (см. ниже). Другой вид взаимопревращений элементарных частиц - аннигиляция пары при столкновениях частиц с образованием конечного числа фотонов (квантов). Обычно образуются 2 фотона при нулевом суммарном спине сталкивающихся частиц и 3 фотона - при суммарном спине , равном 1 (проявление закона сохранения зарядовой четности).
При определенных условиях, в частности при невысокой скорости сталкивающихся частиц, возможно образование связанной системы - позитрония е - е + и мюония Эти нестабильные системы, часто наз. водородоподобными атомами , их время жизни в в-ве в большой степени зависит от св-в в-ва, что позволяет использовать водородоподобные атомы для изучения структуры конденсир. в-ва и кинетики быстрых хим. р-ций (см. Мезонная химия , Ядерная химия).

Кварковая модель адронов. Детальное рассмотрение квантовых чисел адронов с целью их классификации позволило сделать вывод о том, что странные адроны и обычные адроны в совокупности образуют объединения частиц с близкими св-вами, названные унитарными мультиплетами. Числа входящих в них частиц равны 8 (октет) и 10 (декуплет). Частицы, входящие в состав унитарного мультиплета, имеют одинаковые спин и внутр. четность, но различаются значениями электрич. заряда (частицы изотопич. мультиплета) и странности. С унитарными группами связаны св-ва симметрии , их обнаружение явилось основой для вывода о существовании особых структурных единиц, из к-рых построены адроны,-кварков. Считают, что адроны представляют собой комбинации 3 фундам. частиц со спином 1 / 2: и-кварков, d-кварков и s-кварков. Так, мезоны составлены из кварка и антикварка, барионы - из 3 кварков.
Допущение, что адроны составлены из 3 кварков, было сделано в 1964 (Дж. Цвейг и независимо от него М. Гелл-Ман). В дальнейшем в модель строения адронов (в частности, для того чтобы не возникало противоречия с принципом Паули) были включены еще 2 кварка - "очарованный" (с) и "красивый" (b), а также введены особые характеристики кварков - "аромат" и "цвет". Кварки, выступающие как составные части адронов, в свободном состоянии не наблюдались. Все многообразие адронов обусловлено разл. сочетаниями и-, d-, s-, с- и b-кварков, образующих связные состояния. Обычным адронам (протону , нейтрону ,-мезонам) соответствуют связные состояния, построенные из и- и d-кварков. Наличие в адроне наряду с и- и d-кварками одного s-, с- или b-кварка означает, что соответствующий адрон - "странный", "очарованный" или "красивый".
Кварковая модель строения адронов подтвердилась в результате экспериментов, проведенных в кон. 60-х - нач.
70-х гг. 20 в. Кварки фактически стали рассматриваться как новые элементарные частицы- истинно элементарные частицы для адронной формы материи. Ненаблюдаемость свободных кварков, по-видимому, носит принципиальный характер и дает основания предполагать, что они являются теми элементарными частицами, к-рые замыкают цепь структурных составляющих в-ва. Существуют теоретич. и эксперим. доводы в пользу того, что силы, действующие между кварками, не ослабевают с расстоянием, т. е. для отделения кварков друг от друга требуется бесконечно большая энергия или, иначе говоря, возникновение кварков в свободном состоянии невозможно. Это делает их совершенно новым типом структурных единиц в-ва. Возможно, что кварки выступают как последняя ступень дробления материи.

Краткие исторические сведения. Первой открытой элементарной частицей был электрон - носитель отрицат. электрич. заряда в атомах (Дж. Дж. Томсон, 1897). В 1919 Э. Резерфорд обнаружил среди частиц, выбитых из и К-мезоны (группа С. Пауэлла, 1947; существование подобных частиц было предположено X. Юкавой в 1935). В кон. 40-х - нач. 50-х гг. были обнаружены "странные" частицы. Первые частицы этой группы - К + - и К - -мезоны, Л-гипероны - были зафиксированы также в космич. лучах.
С нач. 50-х гг. ускорители превратились в осн. инструмент исследования элементарных частиц. Были открыты антипротон (1955), антинейтрон (1956), анти--гиперон (1960), а в 1964 - самый тяжелый W -гиперон. В 1960-х гг. на ускорителях обнаружили большое число крайне неустойчивых резонансов. В 1962 выяснилось, что существуют два разных нейтрино : электронное и мюонное. В 1974 обнаружены массивные (в 3-4 протонные массы) и в то же время относительно устойчивые (по сравнению с обычными резонансами) частицы, к-рые оказались тесно связанными с новым семейством элементарных частиц - "очарованных", их первые представители открыты в 1976. В 1975 обнаружен тяжелый аналог электрона и мюона --лептон, в 1977 - частицы с массой порядка десяти протонных масс, в 1981 - "красивые" частицы. В 1983 открыты самые тяжелые из известных элементарных частиц - бозоны (масса80 ГэВ) и Z° (91 ГэВ).
Т. обр., за годы, прошедшие после открытия электрона , выявлено огромное число разнообразных микрочастиц. Мир элементарных частиц оказался сложно устроенным, а их св-ва во многих отношениях неожиданными.

Лит.: Коккедэ Я., Теория кварков, [пер. с англ.], М., 1971; Марков М. А., О природе материи, М., 1976; Окунь Л.Б., Лептоны и кварки, 2 изд., М., 1990.