Принцип суперпозиции электростатических полей. Поле диполя

Основная задача электростатики формулируется следующим образом: по заданному распределению в пространстве источников поля - электрических зарядов - найти значение вектора напряжённости во всех точках поля. Эта задача может быть решена на основе принципа суперпозиции электрических полей.

Напряжённость электрического поля системы зарядов равна геометрической сумме напряжённостей полей каждого из зарядов в отдельности.

Заряды могут быть распределены в пространстве либо дискретно, либо непрерывно. В первом случае напряжённость поля для системы точечных зарядов

где - напряжённость поля i -го заряда системы в рассматриваемой точке пространства, n - общее число дискретных зарядов системы.

Если электрические заряды непрерывно распределены вдоль линии, то вводится линейная плотность зарядов t , Кл/м.

t = (dq/dl),

где dq - заряд малого участка длиной dl .

Если электрические заряды непрерывно распределены по поверхности, то вводится поверхностная плотность зарядов s , Кл/м 2 .

s = (dq/dS ),

где dq - заряд, расположенный на малом участке поверхности площадью dS .

При непрерывном распределении зарядов в каком-либо объёме вводится объёмная плотность зарядов r , Кл/м 3 .

r = (dq/dV),

где dq - заряд, находящийся в малом элементе объёма dV .

Согласно принципу суперпозиции напряжённость электростатического поля, создаваемого в вакууме непрерывно распределёнными зарядами:

где - напряжённость электростатического поля, создаваемого в вакууме малым зарядом dq , а интегрирование проводится по всем непрерывно распределённым зарядам.

Рассмотрим применение принципа суперпозиции к электрическому диполю.

Электрическим диполем называется система из двух равных по абсолютной величине и противоположных по знаку электрических зарядов (q и –q ), расстояние l между которыми мало по сравнению с расстоянием до рассматриваемых точек поля. Вектор , направленный по оси диполя от отрицательного заряда к положительному, называется плечом диполя. Вектор называется электрическим моментом диполя (дипольным электрическим моментом). Напряжённость поля диполя в произвольной точке , где и - напряжённости полей зарядов q и -q (рис. 1.2).

В точке А, расположенной на оси диполя на расстоянии r от его центра (r>>l ), напряжённость поля диполя в вакууме:

В точке В, расположенной на перпендикуляре, восстановленном к оси диполя из его середины, на расстоянии r от центра (r>>l ):

В произвольной точке С модуль вектора напряженности

где r - величина радиуса-вектора, проведенного от центра диполя к точке С; a - угол между радиусом-вектором и дипольным моментом(рис. 1.2).



1.3. Поток напряжённости. Теорема Гаусса для электростатического поля в вакууме

Элементарным потоком напряжённости электрического поля сквозь малый участок площадью dS поверхности, проведённой в поле, называется скалярная физическая величина

dN = = EdScos() = E n dS = EdS ^ ,

где - вектор напряжённости электрического поля на площадке dS , - единичный вектор, нормальный к площадке dS , -вектор площадки, Е n = Ecos() - проекция вектора на направление вектора , dS ^ = dScos() - площадь проекции элемента dS поверхности на плоскость, перпендикулярную вектору (рис. 1.3).

Теорема Гаусса

Поток напряжённости электростатического поля в вакууме сквозь произвольную замкнутую поверхность пропорционален алгебраической сумме электрических зарядов, охватываемых этой поверхностью:

где все векторы направлены вдоль внешнихнормалей к замкнутой поверхности интегрирования S , которую часто называют гауссовой поверхностью.

1.4. Потенциал электростатического поля. Работа, совершаемая силами электростатического поля при перемещении в нём электрического заряда

Работа , совершаемая кулоновскими силами при малом перемещении точечного заряда q в электростатическом поле:

где - напряжённость поля в месте нахождения заряда q . Работа кулоновской силы при перемещении заряда q из точки 1 в точку 2 не зависит от формы траектории движения заряда (т.е. кулоновские силы являются консервативными силами). Работа сил электростатического поля при перемещении заряда q вдоль любого замкнутого контура L равна нулю. Это можно записать в виде теоремы о циркуляции вектора напряженности электростатического поля.

Циркуляция вектора напряженности электростатического поля равна нулю:

Это соотношение, выражающее потенциальный характер электростатического поля, справедливо как в вакууме, так и в веществе.

Работа , совершаемая силами электростатического поля при малом перемещении точечного заряда q в электростатическом поле, равна убыли потенциальной энергии этого заряда в поле:

dА= - dW П и А 12 = - DW П = W П1 - W П2 ,

где W П1 и W П2 - значения потенциальной энергии заряда q в точках 1 и 2 поля. Энергетической характеристикой электростатического поля служит его потенциал.

Потенциалом электростатического поля называется скалярная физическая величина j , равная потенциальной энергии W П положительного единичного точечного заряда, помещённого в рассматриваемую точку поля, В.

Потенциал поля точечного заряда q в вакууме

Принцип суперпозиции для потенциала

т.е. при наложении электростатических полей их потенциалы складываются алгебраически.

Потенциал поля электрического диполя в точке С (рис. 1.2)

Если заряды распределены в пространстве непрерывно, то потенциал j их поля в вакууме:

Интегрирование проводится по всем зарядам, образующим рассматриваемую систему.

Работа А 12 , совершаемая силами электростатического поля при перемещении точечного заряда q из точки 1 поля (потенциал j 1 ) в точку 2 (потенциал j 2 ):

А 12 = q (j 1 - j 2).

Если j 2 = 0, то .

Потенциал какой-либо точки электростатического поля численно равен работе, совершаемой силами поля при перемещении положительного единичного заряда из данной точки в точку поля, где потенциал принят равным нулю.

При изучении электростатических полей в каких-либо точках важны разности, а не абсолютные значения потенциалов в этих точках. Поэтому выбор точки с нулевым потенциалом определяется только удобством решения данной задачи. Связь между потенциалом и напряжённостью имеет вид

Е х = , Е у = , Е z = и ,

т.е. напряжённость электростатического поля равна по модулю и противоположна по направлению градиенту потенциала.

Геометрическое место точек электростатического поля, в которых значения потенциалов одинаковы, называется эквипотенциальной поверхностью. Если вектор направлен по касательной к эквипотенциальной поверхности, то и . Это означает, что вектор напряженности перпендикулярен эквипотенциальной поверхности в каждой точке, т.е. E = E n .

1.5. Примеры применения теоремы Гаусса к расчёту электростатических полей s >0) или к ней (если s < 0).

Для всех точек поля

Так как , и полагая потенциал поля равным нулю в точках заряженной плоскости (х = 0), получим

Графики зависимостей Е и j от x приведены на рис. 1.6.

Рассмотрим метод определения модуля и направления вектора напряженности Е в каждой точке электростатического поля, создаваемого системой неподвижных зарядов Q 1 , Q 2 , …,Q n .

Опыт показывает, что к кулоновским силам применим рассмотренный в механике принцип независимости действия сил (см. § 6), т. е. результирующая силаF, действующая со стороны поля на пробный заряд Q 0 , равна векторной сумме сил F i , приложенных к нему со стороны каждого из зарядов Qi:

Согласно (79.1), и , где Е-напряженность результирующего поля, а Еi - напряженность поля, создаваемого зарядом Qi ;. Подставляя последние выражения в (80.1), получаем

(80.2)

Формула (80.2) выражаетпринцип суперпозиции (наложения) электростатических полей, согласно которому напряженность Е результирующего поля, создаваемого системой зарядов, равна геометрической сумме напряженностей полей, создаваемых в данной точке каждым из зарядов в отдельности.

Принцип суперпозиции применим для расчета электростатического поля электрического диполя.Электрический диполь - система двух равных по модулю разно именных точечных зарядов (+Q, -Q), расстояние l между которыми значительно меньше расстояния до рассматриваемых точек поля. Вектор, направленный по оси диполя (прямой, проходящей через оба заряда) от отрицательного заряда к положительному и равный расстоянию между ними, называетсяплечом диполя 1. Вектор

совпадающий по направлению с плечом диполя и равный произведению заряда |Q | на плечо l , называетсяэлектрическим моментом диполя илидипольным моментом (рис. 122).

Рис. 122

где Е+ и Е- - напряженности полей, создаваемых соответственно положительным и отрицательным зарядами. Воспользовавшись этой формулой, рассчитаем напряженность поля в произвольной точке на продолжении оси диполя и на перпендикуляре к середине его оси.

1. Напряженность поля на продолжении оси диполя в точке А (рис. 123). Как видно из рисунка, напряженность поля диполя в точке А направлена по оси диполя и по модулю равна

Рис. 123

Обозначив расстояние от точки А до середины оси диполя через г, на основании формулы (79.2) для вакуума можно записать

Электричество и магнетизм

ЛЕКЦИЯ 11

ЭЛЕКТРОСТАТИКА

Электрический заряд

Большое количество явлений в природе связано с проявлением особого свойства эле-ментарных частиц вещества - наличия у них электриче­ского заряда. Эти явления были названы электрическими и магнитными.

Слово «электричество» происходит от греческого hlectron - электрон (янтарь). Способность натертого янтаря приобретать заряд и притягивать легкие предметы была отмечена еще в древней Греции.

Слово «магнетизм» происходит от названия города Магнезия в Малой Азии, вблизи которого были открыты свойства железной руды (магнитного железняка FеО∙Fе 2 О 3) притягивать железные предметы и сообщать им маг­нитные свойства.

Учение об электричестве и магнетизме распадается на разделы:

а) учение о неподвижных зарядах и свя-занных с ними неизменных электрических полях - электростатика;

б) учение о равномерно движущихся заря-дах – постоянный ток и маг­нетизм;

в) учение о неравномерно движущихся зарядах и создаваемых при этом переменных полях - переменный ток и электродинамика, или теория элект­ромагнитного поля.

Электризация трением

Стеклянная палочка, натертая кожей, или эбонитовая палочка, натер­тая шерстью, при-обретают при этом электрический заряд или, как говорят, электризуются.

Бузиновые шарики (рис.11.1), к которым прикоснулись стек-лянной па­лочкой, отталкиваются. Если к ним прикоснуться эбонитовой палочкой, они также отталки-ваются. Если же к одному из них прикоснуться эбонито­вой, а к другому стеклянной палочкой, то они притянутся.

Следовательно, существуют два типа электрических зарядов. Заряды, возникающие на потертом кожей стекле, условились назы-вать положи­тельными (+). Заряды, возникаю-щие на потертом шерстью эбоните, услови-лись называть отрицательными (-).

Опыты показывают, что одноименные заряды (+ и +, либо – и -) отталкиваются, разноименные (+ и -) притягиваются.

Точечным зарядом называется заряжен-ное тело, размерами которого можно прене-бречь по сравнению с расстояниями, на которых рас­сматривается воздействие этого заряда на другие заряды. Точечный заряд является абстракцией подобно материальной точке в механике.

Закон взаимодействия точечных

Зарядов (закон Кулона)

В 1785 г. французский ученый Огюст Кулон (1736-1806) на основании опытов с крутильными весами, на конце коромысла ко-торых помещались заряженные тела, а затем к ним подносились другие заряженные тела, уста­новил закон, определяющий силу взаимо-действия двух неподвижных точеч­ных зарядов Q 1 и Q 2 ,расстояние между которыми r .

Закон Кулона в вакууме гласит: сила взаимодействия F между двумя неподвиж-ными точечными зарядами, находящимися в вакууме, пропорциональна зарядам Q 1 и Q 2 и обратно пропорциональна квадрату расстоя-ния r между ними:

,

где коэффициент k зависит от выбора системы единиц и свойств среды, в которой осу­ществляется взаимодействие зарядов.

Величина, показывающая, во сколько раз сила взаимодействия между зарядами в данном диэлектрике меньше силы взаимодействия между ними в вакууме, называется относительной диэлектрической проницаемостью среды e .

Закон Кулона для взаимодействия в среде : сила взаимодействия между двумя точечными зарядами Q 1 и Q 2 прямо пропор-циональна произведению их величин и обрат-но пропорциональна произведению диэлек-трической про­ницаемости среды e . на квадрат расстояния r между зарядами:

.

В системе СИ , где e 0 –диэлект-рическая проницаемость ва­куума, или элект-рическая постоянная. Величина e 0 относится к числу фундамен­тальных физических пос-тоянных и равна e 0 =8,85∙10 -12 Кл 2 /(Н∙м 2), или e 0 =8,85∙10 -12 Ф/м, где фарад (Ф) - единица электрической емкости. Тогда .

С учетом k закон Кулона запишется в окончательном виде:

,

где ee 0 =e а - абсолютная диэлектрическая прони­цаемость среды.

Закон Кулона в векторной форме .

,

где F 12 - сила, действующая на заряд Q 1 со стороны заряда Q 2 , r 12 - радиус-вектор, соединяющий заряд Q 2 с зарядом Q 1, r =|r 12 | (рис.11.1).

На заряд Q 2 со стороны заряда Q 1 действует сила F 21 =-F 12 , т.е. справедлив 3-й закон Ньютона.

11.4. Закон сохранения электрического

Заряда

Из обобщения опытных данных был установлен фундаментальный закон природы, экспериментально подтвержденный в 1843 г. английским физиком Майклом Фарадеем (1791-1867), - закон сохранения заряда .

Закон гласит: алгебраическая сумма электрических зарядов любой замкнутой сис-темы (системы, не обменивающейся зарядами с внешними тела­ми) остается неизменной, какие бы процессы ни происходили внутри этой системы:

.

Закон сохранения электрического заряда выполняется строго как в мак­роскопических взаимодействиях, например при электри-зации тел трением, когда оба тела заряжаются численно равными зарядами противополож-ных знаков, так и в микроскопических взаимодействиях, в ядерных реакциях.

Электризация тела через влияние (электростатическая индукция ). При поднесении к изолированному проводнику заряженного тела происхо­дит разделение зарядов на проводнике (рис. 79).

Если индуцированный на удаленном конце проводника заряд отвести в землю, а затем, сняв предварительно заземление, убрать заряженное тело, то оставшийся на проводнике заряд распределится по провод-нику.

Опытным путем (1910-1914) американс-кий физик Р. Милликен (1868-1953) пока­зал, что электрический заряд дискретен, т.е. заряд любого тела составляет целое кратное от элементарного электрического заряда е (е =1,6∙10 -19 Кл). Электрон (т е = 9,11∙10 -31 кг) и протон (m p =1,67∙10 -27 кг) являются соответст-венно носителями элементарных отрицатель-ного и положительного зарядов.

Электростатическое поле.

Напряженность

Неподвижный заряд Q неразрывно свя-зан с электрическим полем в ок­ружающем его пространстве. Электрическое поле представляет собой особый вид материи и является материальным носителем взаимо-дей­ствия между зарядами даже в случае отсутствия вещества между ними.

Электрическое поле заряда Q действует с силой F на помещаемый в ка­кую-либо из точек поля пробный заряд Q 0 .

Напряженность электрического поля. Вектор напряженности электрического поля в данной точке - физическая величина, определяемая силой, действующей на проб-ный единичный положительный заряд, поме-щенный в эту точку поля:

.

Напряженность поля точечного заряда в вакууме

.

Направление вектора Е совпадает с напра-влением силы, действующей на положитель­ный заряд. Если поле создается положительным зарядом, то вектор Е направлен вдоль радиуса-вектора от заряда во внешнее пространство (отталкивание пробного положи­тельного заря-да); если поле создается отрицательным заря-дом, то вектор Е направлен к заряду (рис. 11.3).

Единица напряжен-ности электрического по­ля - ньютон на кулон (Н/Кл): 1 Н/Кл – напря-женность такого поля, которое на точечный заряд 1 Кл действует с силой в 1 Н; 1 Н/Кл=1 В/м, где В (вольт) - еди­ница потенциала электростатического поля.

Линии напряженности .

Линии, касательные к которым в каждой их точке совпадают по направлению с вектором напряженности в этой точке, называ­ются линиями напряженности (рис.11.4).

Напряженность поля точечного заряда q на расстоянии r от него в системе СИ:

.

Линии напряженности поля точечного заряда представляют собой лучи, выходящие из точки, где помещен заряд (для положите-льного заряда), или входящие в нее (для отрицательного заряда) (рис.11.5,а, б).

Чтобы с помощью линий напряженности можно было характеризовать не только направление, но и значение напряженности электростатического поля, условились про­водить их с определенной густотой (см. рис.11.4): число линий напряженности, прони­зывающих единицу площади поверхности, перпендикулярную линиям напряженности, должно быть равно модулю вектора Е . Тогда число линий напряженности, пронизыва­ющих элементарную площадку dS, нормаль n кото-рой образует угол a с векто-ром Е , равно E dScos a=E n dS, где Е n - проекция вектора Е на нормаль n к площадке dS (рис.11.6). Величина

называется потоком вектора напряжен-ности через площадку dS. Единица потока вектора напряженности электростатического поля - 1 В∙м.

Для произвольной замкнутой поверхности S поток вектора Е сквозь эту поверх­ность

, (11.5)

где интеграл берется по замкнутой поверх-ности S. Поток вектора Е является алгебра­и-ческой величиной: зависит не только от конфигурации поля Е , но и от выбора направления n .

Принцип суперпозиции электрических

Полей

Если электрическое поле создается заря-дами Q 1 , Q 2 , … , Q n , то на пробный заряд Q 0 действует сила F равная векторной сумме сил F i , приложенных к нему со стороны каждого из зарядов Q i :

.

Вектор напряженности электрического поля системы зарядов равен геометрической сумме напряженностей полей, создаваемых каждым из заря­дов в отдельности:

.

Эта принцип суперпозиции (наложения) электростатических полей .

Принцип гласит : напряженность Е результирующего поля, создаваемого систе-мой зарядов, равна геометрической сумме напряженностей полей, создаваемых в данной точке каждым из зарядов в отдельности.

Принцип суперпозиции позволяет рассчи-тать электростатические поля любой си­стемы неподвижных зарядов, поскольку если заряды не точечные, то их можно всегда свести к совокупности точечных зарядов.

Одна из задач, которые ставит электростатика перед собой – это оценка параметров поля при заданном стационарном распределении зарядов в пространстве. И принцип суперпозиции является одним из вариантов решения такой задачи.

Принцип суперпозиции

Предположим наличие трех точечных зарядов, находящихся во взаимодействии друг с другом. При помощи эксперимента возможно осуществить измерение сил, действующих на каждый из зарядов. Для нахождения суммарной силы, с которой на один заряд действуют два других заряда, нужно силы воздействия каждого из этих двух сложить по правилу параллелограмма. При этом логичен вопрос: равны ли друг другу измеряемая сила, которая действует на каждый из зарядов, и совокупность сил со стороны двух иных зарядов, если силы рассчитаны по закону Кулона. Результаты исследований демонстрируют положительный ответ на этот вопрос: действительно, измеряемая сила равна сумме вычисляемых сил согласно закону Кулона со стороны других зарядов. Данное заключение записывается в виде совокупности утверждений и носит название принципа суперпозиции.

Определение 1

Принцип суперпозиции :

  • сила взаимодействия двух точечных зарядов не изменяется, если присутствуют другие заряды;
  • сила, действующая на точечный заряд со стороны двух других точечных зарядов, равна сумме сил, действующих на него со стороны каждого из точечных зарядов при отсутствии другого.

Принцип суперпозиции полей заряда является одним из фундаментов изучения такого явления, как электричество: значимость его сопоставима с важностью закона Кулона.

В случае, когда речь идет о множестве зарядов N (т.е. нескольких источников поля), суммарную силу, которую испытывает на себе пробный заряд q , можно определить по формуле:

F → = ∑ i = 1 N F i a → ,

где F i a → является силой, с которой влияет на заряд q заряд q i , если прочий N - 1 заряд отсутствует.

При помощи принципа суперпозиции с использованием закона взаимодействия между точечными зарядами существует возможность определить силу взаимодействия между зарядами, присутствующими на теле конечных размеров. С этой целью каждый заряд разбивается на малые заряды d q (будем считать их точечными), которые затем берутся попарно; вычисляется сила взаимодействия и в заключение осуществляется векторное сложение полученных сил.

Полевая трактовка принципа суперпозиции

Определение 2

Полевая трактовка : напряженность поля двух точечных зарядов есть сумма напряженностей, создаваемым каждым из зарядов при отсутствии другого.

Для общих случаев принцип суперпозиции относительно напряженностей имеет следующую запись:

E → = ∑ E i → ,

где E i → = 1 4 π ε 0 q i ε r i 3 r i → является напряженностью i -го точечного заряда, r i → - радиусом вектора, проложенного от i -го заряда в некоторую точку пространства. Указанная формула говорит нам о том, что напряженность поля любого числа точечных зарядов есть сумма напряженностей полей каждого из точечных зарядов, если другие отсутствуют.

Инженерная практика подтверждает соблюдение принципа суперпозиции даже для очень больших напряженностей полей.

Значимым размером напряженности обладают поля в атомах и ядрах (порядка 10 11 - 10 17 В м), но и в этом случае применялся принцип суперпозиции для расчетов энергетических уровней. При этом наблюдалось совпадение результатов расчетов с данными экспериментов с большой точностью.

Все же следует также заметить, что в случае очень малых расстояний (порядка ~ 10 - 15 м) и экстремально сильных полей принцип суперпозиции, вероятно, не выполняется.

Пример 1

Например, на поверхности тяжелых ядер при напряженности порядка ~ 10 22 В м принцип суперпозиции выполняется, а при напряженности 10 20 В м возникают квантово-механические нелинейности взаимодействия.

Когда распределение заряда является непрерывным (т.е. отсутствует необходимость учета дискретности), совокупная напряженность поля задается формулой:

E → = ∫ d E → .

В этой записи интегрирование проводится по области распределения зарядов:

  • при распределении зарядов по линии (τ = d q d l - линейная плотность распределения заряда) интегрирование проводится по линии;
  • при распределении зарядов по поверхности (σ = d q d S - поверхностная плотность распределения) интегрирование проводится по поверхности;
  • при объемном распределении заряда (ρ = d q d V - объемная плотность распределения) интегрирование проводится по объему.

Принцип суперпозиции дает возможность находить E → для любой точки пространства при известном типе пространственного распределения заряда.

Пример 2

Заданы одинаковые точечные заряды q , расположенные в вершинах квадрата со стороной a . Необходимо определить, какая сила воздействует на каждый заряд со стороны других трех зарядов.

Решение

На рисунке 1 проиллюстрируем силы, влияющие на любой из заданных зарядов в вершинах квадрата. Поскольку условием задано, что заряды одинаковы, для иллюстрации возможно выбрать любой из них. Сделаем запись суммирующей силы, влияющей на заряд q 1:

F → = F 12 → + F 14 → + F 13 → .

Силы F 12 → и F 14 → являются равными по модулю, определим их так:

F 13 → = k q 2 2 a 2 .

Рисунок 1

Теперь зададим направление оси О Х (рисунок 1), спроектируем уравнение F → = F 12 → + F 14 → + F 13 → , подставим в него полученные выше модули сил и тогда:

F = 2 k q 2 a 2 · 2 2 + k q 2 2 a 2 = k q 2 a 2 2 2 + 1 2 .

Ответ: сила, оказывающее воздействие на каждый из заданных зарядов, находящихся в вершинах квадрата, равна F = k q 2 a 2 2 2 + 1 2 .

Пример 3

Задан электрический заряд, распределенный равномерно вдоль тонкой нити (с линейной плотностью τ). Необходимо записать выражение, определяющее напряженность поля на расстоянии a от конца нити вдоль ее продолжения. Длина нити – l .

Рисунок 2

Решение

Первым нашим шагом будет выделение на нити точечного заряда d q . Составим для него, в соответствии с законом Кулона, запись, выражающую напряженность электростатического поля:

d E → = k d q r 3 r → .

В заданной точке все векторы напряженности имеют одинаковую направленность вдоль оси ОХ, тогда:

d E x = k d q r 2 = d E .

Условием задачи дано, что заряд имеет равномерное распределение вдоль нити с заданной плотностью, и запишем следующее:

Подставим эту запись в записанное ранее выражение напряженности электростатического поля, проинтегрируем и получим:

E = k ∫ a l + a τ d r r 2 = k τ - 1 r a l + a = k τ l a (l + a) .

Ответ: напряженность поля в указанной точке будет определяться по формуле E = k τ l a (l + a) .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Если стержень будет очень длинным (бесконечным), т.е. x «a , из (2.2.13) следует (2.2.14) Определим в этом последнем случае также потенциал поля. Для этого воспользуемся связью между напряженностью и потенциалом. Как видно из (2.2.14) в случае бесконечного стержня напряженность в любой точке поля имеет только радиальную составляющую Е . Следовательно потенциал будет зависеть лишь от этой координаты и из (2.1.11) получим - = . (2.2.15) Постоянную в (2.2.5) находят, положив потенциал равным нулю на некотором расстоянии L от стержня, и тогда . (2.2.16) Лекция 2.3 Поток вектора . Теорема Гаусса. Потоком вектора через какую-либо поверхность называется поверхностный интеграл
,

где = – вектор, по направлению совпадающий с нормалью к поверхности ( единичный вектор нормали к поверхности) и по модулю равный площади . Так как под интегралом стоит скалярное произведение векторов, то поток может получаться как положительным, так и отрицательным, в зависимости от выбора направления вектора . Геометрически поток пропорционален числу силовых линий, пронизывающих данную площадку (см. рис.2.3.1).

Теорема Гаусса.

Поток вектора напряженности электрического поля через произвольную

замкнутую поверхность равен алгебраической сумме зарядов, заключенных

внутри этой поверхности, деленной на (в системе СИ)

. (2.3.1)

В случае замкнутой поверхности вектор выбирают от поверхности наружу.

Таким образом, если силовые линии выходят из поверхности, поток будет положительным, а если входят, то – отрицательным.

Расчет электрических полей с помощью теоремы Гаусса.

В ряде случаев напряженность электрического поля по теореме Гаусса рассчи-

тывается достаточно просто. Однако в основе лежит принцип суперпозиции.

Поскольку поле точечного заряда является центрально-симметричным, то поле

центрально-симметричной системы зарядов также будет центрально-симметричным. Простейший пример – поле равномерно заряженного шара. Если распределение заряда обладает осевой симметрией, то и структура поля будет отличаться осевой симметрией. Примером может служить бесконечная равномерно заряженная нить или цилиндр. Если заряд равномерно распределен по бесконечной плоскости, то силовые линии поля будут располагаться симметрично относительно симметрии заряда. Таким образом, указанный метод расчета применяют в случае высокой степени симметрии распределения заряда, создающего поля. Далее приведем примеры расчета таких полей.

Электрическое поле однородно заряженного шара.

Шар радиуса равномерно заряжен с объемной плотностью . Рассчитаем поле внутришара .

Система зарядов центрально-симметричная. В

качестве поверхности интегрирования выберем

сферу радиуса r (r <R ), центр которой совпадает

с центром симметрии заряда (см. рис.2.3.2). Рассчитаем поток вектора через эту поверхность.

Вектор направлен по радиусу. Так как поле

обладает центральной симметрией, то

значение Е будет одинаково во всех точках

выбранной поверхности. Тогда

Теперь найдем заряд, заключенный внутри выбранной поверхности

Отметим, что, если заряд распределен не по всему объему шара, а лишь по его поверхности (задана заряженная сфера ), то напряженность поля внутри будет равна нулю .

Рассчитаем поле вне шара см. рис. 2.3.3.

Теперь поверхность интегрирования полностью охватывает весь заряд шара. Теорема Гаусса запишется в виде

Учтем, что поле центрально симметричное

Окончательно для напряженности поля снаружи заряженного шара получим

Таким образом, поле вне равномерно заряженного шара будет иметь такой же вид, как для точечного заряда, помещенного в центре шара. Тот же результат получим и для равномерно заряженной сферы.

Проанализировать полученный результат (2.3.2) и (2.3.3) можно с помощью графика рис.2.3.4.

Электрическое поле бесконечного равномерно заряженного цилиндра.

Пусть бесконечно длинный цилиндр заряжен равномерно с объемной плотностью .

Радиус цилиндра равен . Найдем поле внутри цилиндра , как функцию

расстояния от оси. Поскольку система зарядов имеет осевую симметрию,

поверхностью интегрирования мысленно выберем также цилиндр меньшего

радиуса и произвольной высоты , ось которого совпадает с осью симметрии задачи (рис.2.3.5). Рассчитаем поток через поверхность этого цилиндра, разбив его на интеграл по боковой поверх-

ности и по основаниям

Из соображений симметрии

следует, что направлен радиально. Тогда, так как силовые линии поля не пронизывают ни одно из оснований выбранного цилиндра,то поток через эти поверхности равен нулю. Поток вектора через боковую поверхность цилиндра запишется:

Подставим оба выражения в исходную формулу теоремы Гаусса (2.3.1)

После несложных преобразований получим выражение для напряженности электрического поля внутри цилиндра

В этом случае также, если заряд распределен только по поверхности цилиндра, то напряженность поля внутри равна нулю.

Теперь найдем поле снаружи заряженного цилиндра

Мысленно выберем в качестве поверхности, через которую будем рассчитывать поток вектора , цилиндр радиуса и произвольной высоты (см. рис. 2.3.6).

Поток запишется так же как и для внутренней области. А заряд, заключенный внутри мысленного цилиндра, будет равен:

После несложных преобразований получим выражение для напряженности электрического

поля снаружи заряженного цилиндра:

Если ввести в этой задаче линейную плотность заряда, т.е. заряд на единице длины цилиндра , то выражение (2.3.5) преобразуется к виду

Что соответствует результату, полученному с помощью принципа суперпозиции (2.2.14).

Как видим зависимости в выражениях (2.3.4) и (2.3.5) разные. Построим график .

Поле бесконечной равномерно заряженной плоскости.

Бесконечная плоскость равномерно заряжена с поверхностной плотностью . Силовые линии электрического поля симметричны относительно этой плоскости, а, следовательно вектор перпендикулярен заряженной плоскости. Мысленно выберем для интегрирования цилиндр произвольных размеров и расположим его как показано на рис.2.3.8. Запишем теорему Гаусса:) бывает удобно ввести скалярную характеристику изменения поля , называемую дивергенцией. Для определения этой характеристики выберем в поле малый объем вблизи некоторой точки Р и найдем поток вектора через поверхность, ограничивающую этот объем. Затем поделим полученную величину на объем и возьмем предел полученного отношения при стягивании объема к данной точке Р . Полученная величина называется дивергенцией вектора

. (2.3.7)

Из сказанного следует . (2.3.8)

Это соотношение носит название теорема Гаусса – Остроградского , оно справедливо для любого векторного поля.

Тогда из (2.3.1) и (2.3.8), принимая во внимание, что заряд, заключенный в объеме V, можно записать получим

или, так как в обеих частях уравнения интеграл берется по одному и тому же объему,

Это уравнение математически выражает теорему Гаусса для электрического поля в дифференциальной форме.

Смысл операции дивергенция состоит в том, что она устанавливает наличие источников поля (источников силовых линий). Точки, в которых дивергенция не равна нулю, являются источниками силовых линий поля. Таким образом, силовые линии электростатического поля начинаются и заканчиваются на зарядах.