Момент инерции тела относительно оси. Момент инерции Момент инерции механической системы относительно произвольной оси

Тела m на квадрат расстояния d между осями :

J = J c + m d 2 , {\displaystyle J=J_{c}+md^{2},}

где m - полная масса тела.

Например, момент инерции стержня относительно оси, проходящей через его конец, равен:

J = J c + m d 2 = 1 12 m l 2 + m (l 2) 2 = 1 3 m l 2 . {\displaystyle J=J_{c}+md^{2}={\frac {1}{12}}ml^{2}+m\left({\frac {l}{2}}\right)^{2}={\frac {1}{3}}ml^{2}.}

Осевые моменты инерции некоторых тел

Моменты инерции однородных тел простейшей формы относительно некоторых осей вращения
Тело Описание Положение оси a Момент инерции J a
Материальная точка массы m На расстоянии r от точки, неподвижная
Полый тонкостенный цилиндр или кольцо радиуса r и массы m Ось цилиндра m r 2 {\displaystyle mr^{2}}
Сплошной цилиндр или диск радиуса r и массы m Ось цилиндра 1 2 m r 2 {\displaystyle {\frac {1}{2}}mr^{2}}
Полый толстостенный цилиндр массы m с внешним радиусом r 2 и внутренним радиусом r 1 Ось цилиндра m r 2 2 + r 1 2 2 {\displaystyle m{\frac {r_{2}^{2}+r_{1}^{2}}{2}}}
Сплошной цилиндр длины l , радиуса r и массы m 1 4 m ⋅ r 2 + 1 12 m ⋅ l 2 {\displaystyle {1 \over 4}m\cdot r^{2}+{1 \over 12}m\cdot l^{2}}
Полый тонкостенный цилиндр (кольцо) длины l , радиуса r и массы m Ось перпендикулярна к цилиндру и проходит через его центр масс 1 2 m ⋅ r 2 + 1 12 m ⋅ l 2 {\displaystyle {1 \over 2}m\cdot r^{2}+{1 \over 12}m\cdot l^{2}}
Прямой тонкий стержень длины l и массы m Ось перпендикулярна к стержню и проходит через его центр масс 1 12 m l 2 {\displaystyle {\frac {1}{12}}ml^{2}}
Прямой тонкий стержень длины l и массы m Ось перпендикулярна к стержню и проходит через его конец 1 3 m l 2 {\displaystyle {\frac {1}{3}}ml^{2}}
Тонкостенная сфера радиуса r и массы m Ось проходит через центр сферы 2 3 m r 2 {\displaystyle {\frac {2}{3}}mr^{2}}
Шар радиуса r и массы m Ось проходит через центр шара 2 5 m r 2 {\displaystyle {\frac {2}{5}}mr^{2}}
Конус радиуса r и массы m Ось конуса 3 10 m r 2 {\displaystyle {\frac {3}{10}}mr^{2}}
Равнобедренный треугольник с высотой h , основанием a и массой m Ось перпендикулярна плоскости треугольника и проходит через вершину 1 24 m (a 2 + 12 h 2) {\displaystyle {\frac {1}{24}}m(a^{2}+12h^{2})}
Правильный треугольник со стороной a и массой m Ось перпендикулярна плоскости треугольника и проходит через центр масс 1 12 m a 2 {\displaystyle {\frac {1}{12}}ma^{2}}
Квадрат со стороной a и массой m Ось перпендикулярна плоскости квадрата и проходит через центр масс 1 6 m a 2 {\displaystyle {\frac {1}{6}}ma^{2}}
Прямоугольник со сторонами a и b и массой m Ось перпендикулярна плоскости прямоугольника и проходит через центр масс 1 12 m (a 2 + b 2) {\displaystyle {\frac {1}{12}}m(a^{2}+b^{2})}
Правильный n-угольник радиуса r и массой m Ось перпендикулярна плоскости и проходит через центр масс m r 2 6 [ 1 + 2 cos ⁡ (π / n) 2 ] {\displaystyle {\frac {mr^{2}}{6}}\left}
Тор (полый) с радиусом направляющей окружности R , радиусом образующей окружности r и массой m Ось перпендикулярна плоскости направляющей окружности тора и проходит через центр масс I = m (3 4 r 2 + R 2) {\displaystyle I=m\left({\frac {3}{4}}\,r^{2}+R^{2}\right)}

Вывод формул

Тонкостенный цилиндр (кольцо, обруч)

Вывод формулы

Момент инерции тела равен сумме моментов инерции составляющих его частей. Разобьём тонкостенный цилиндр на элементы с массой dm и моментами инерции dJ i . Тогда

J = ∑ d J i = ∑ R i 2 d m . (1) . {\displaystyle J=\sum dJ_{i}=\sum R_{i}^{2}dm.\qquad (1).}

Поскольку все элементы тонкостенного цилиндра находятся на одинаковом расстоянии от оси вращения, формула (1) преобразуется к виду

J = ∑ R 2 d m = R 2 ∑ d m = m R 2 . {\displaystyle J=\sum R^{2}dm=R^{2}\sum dm=mR^{2}.}

Толстостенный цилиндр (кольцо, обруч)

Вывод формулы

Пусть имеется однородное кольцо с внешним радиусом R , внутренним радиусом R 1 , толщиной h и плотностью ρ . Разобьём его на тонкие кольца толщиной dr . Масса и момент инерции тонкого кольца радиуса r составит

d m = ρ d V = ρ ⋅ 2 π r h d r ; d J = r 2 d m = 2 π ρ h r 3 d r . {\displaystyle dm=\rho dV=\rho \cdot 2\pi rhdr;\qquad dJ=r^{2}dm=2\pi \rho hr^{3}dr.}

Момент инерции толстого кольца найдём как интеграл

J = ∫ R 1 R d J = 2 π ρ h ∫ R 1 R r 3 d r = {\displaystyle J=\int _{R_{1}}^{R}dJ=2\pi \rho h\int _{R_{1}}^{R}r^{3}dr=} = 2 π ρ h r 4 4 | R 1 R = 1 2 π ρ h (R 4 − R 1 4) = 1 2 π ρ h (R 2 − R 1 2) (R 2 + R 1 2) . {\displaystyle =2\pi \rho h\left.{\frac {r^{4}}{4}}\right|_{R_{1}}^{R}={\frac {1}{2}}\pi \rho h\left(R^{4}-R_{1}^{4}\right)={\frac {1}{2}}\pi \rho h\left(R^{2}-R_{1}^{2}\right)\left(R^{2}+R_{1}^{2}\right).}

Поскольку объём и масса кольца равны

V = π (R 2 − R 1 2) h ; m = ρ V = π ρ (R 2 − R 1 2) h , {\displaystyle V=\pi \left(R^{2}-R_{1}^{2}\right)h;\qquad m=\rho V=\pi \rho \left(R^{2}-R_{1}^{2}\right)h,}

получаем окончательную формулу для момента инерции кольца

J = 1 2 m (R 2 + R 1 2) . {\displaystyle J={\frac {1}{2}}m\left(R^{2}+R_{1}^{2}\right).}

Однородный диск (сплошной цилиндр)

Вывод формулы

Рассматривая цилиндр (диск) как кольцо с нулевым внутренним радиусом (R 1 = 0 ), получим формулу для момента инерции цилиндра (диска):

J = 1 2 m R 2 . {\displaystyle J={\frac {1}{2}}mR^{2}.}

Сплошной конус

Вывод формулы

Разобьём конус на тонкие диски толщиной dh , перпендикулярные оси конуса. Радиус такого диска равен

r = R h H , {\displaystyle r={\frac {Rh}{H}},}

где R – радиус основания конуса, H – высота конуса, h – расстояние от вершины конуса до диска. Масса и момент инерции такого диска составят

d J = 1 2 r 2 d m = 1 2 π ρ r 4 d h = 1 2 π ρ (R h H) 4 d h ; {\displaystyle dJ={\frac {1}{2}}r^{2}dm={\frac {1}{2}}\pi \rho r^{4}dh={\frac {1}{2}}\pi \rho \left({\frac {Rh}{H}}\right)^{4}dh;}

Интегрируя, получим

J = ∫ 0 H d J = 1 2 π ρ (R H) 4 ∫ 0 H h 4 d h = 1 2 π ρ (R H) 4 h 5 5 | 0 H == 1 10 π ρ R 4 H = (ρ ⋅ 1 3 π R 2 H) 3 10 R 2 = 3 10 m R 2 . {\displaystyle {\begin{aligned}J=\int _{0}^{H}dJ={\frac {1}{2}}\pi \rho \left({\frac {R}{H}}\right)^{4}\int _{0}^{H}h^{4}dh={\frac {1}{2}}\pi \rho \left({\frac {R}{H}}\right)^{4}\left.{\frac {h^{5}}{5}}\right|_{0}^{H}=={\frac {1}{10}}\pi \rho R^{4}H=\left(\rho \cdot {\frac {1}{3}}\pi R^{2}H\right){\frac {3}{10}}R^{2}={\frac {3}{10}}mR^{2}.\end{aligned}}}

Сплошной однородный шар

Вывод формулы

Разобьём шар на тонкие диски толщиной dh , перпендикулярные оси вращения. Радиус такого диска, расположенного на высоте h от центра сферы, найдём по формуле

r = R 2 − h 2 . {\displaystyle r={\sqrt {R^{2}-h^{2}}}.}

Масса и момент инерции такого диска составят

d m = ρ d V = ρ ⋅ π r 2 d h ; {\displaystyle dm=\rho dV=\rho \cdot \pi r^{2}dh;} d J = 1 2 r 2 d m = 1 2 π ρ r 4 d h = 1 2 π ρ (R 2 − h 2) 2 d h = 1 2 π ρ (R 4 − 2 R 2 h 2 + h 4) d h . {\displaystyle dJ={\frac {1}{2}}r^{2}dm={\frac {1}{2}}\pi \rho r^{4}dh={\frac {1}{2}}\pi \rho \left(R^{2}-h^{2}\right)^{2}dh={\frac {1}{2}}\pi \rho \left(R^{4}-2R^{2}h^{2}+h^{4}\right)dh.}

Момент инерции шара найдём интегрированием:

J = ∫ − R R d J = 2 ∫ 0 R d J = π ρ ∫ 0 R (R 4 − 2 R 2 h 2 + h 4) d h = = π ρ (R 4 h − 2 3 R 2 h 3 + 1 5 h 5) | 0 R = π ρ (R 5 − 2 3 R 5 + 1 5 R 5) = 8 15 π ρ R 5 = = (4 3 π R 3 ρ) ⋅ 2 5 R 2 = 2 5 m R 2 . {\displaystyle {\begin{aligned}J&=\int _{-R}^{R}dJ=2\int _{0}^{R}dJ=\pi \rho \int _{0}^{R}\left(R^{4}-2R^{2}h^{2}+h^{4}\right)dh=\\&=\pi \rho \left.\left(R^{4}h-{\frac {2}{3}}R^{2}h^{3}+{\frac {1}{5}}h^{5}\right)\right|_{0}^{R}=\pi \rho \left(R^{5}-{\frac {2}{3}}R^{5}+{\frac {1}{5}}R^{5}\right)={\frac {8}{15}}\pi \rho R^{5}=\\&=\left({\frac {4}{3}}\pi R^{3}\rho \right)\cdot {\frac {2}{5}}R^{2}={\frac {2}{5}}mR^{2}.\end{aligned}}}

Тонкостенная сфера

Вывод формулы

Для вывода воспользуемся формулой момента инерции однородного шара радиуса R :

J 0 = 2 5 M R 2 = 8 15 π ρ R 5 . {\displaystyle J_{0}={\frac {2}{5}}MR^{2}={\frac {8}{15}}\pi \rho R^{5}.}

Вычислим, насколько изменится момент инерции шара, если при неизменной плотности ρ его радиус увеличится на бесконечно малую величину dR .

J = d J 0 d R d R = d d R (8 15 π ρ R 5) d R = = 8 3 π ρ R 4 d R = (ρ ⋅ 4 π R 2 d R) 2 3 R 2 = 2 3 m R 2 . {\displaystyle {\begin{aligned}J&={\frac {dJ_{0}}{dR}}dR={\frac {d}{dR}}\left({\frac {8}{15}}\pi \rho R^{5}\right)dR=\\&={\frac {8}{3}}\pi \rho R^{4}dR=\left(\rho \cdot 4\pi R^{2}dR\right){\frac {2}{3}}R^{2}={\frac {2}{3}}mR^{2}.\end{aligned}}}

Тонкий стержень (ось проходит через центр)

Вывод формулы

Разобьём стержень на малые фрагменты длиной dr . Масса и момент инерции такого фрагмента равна

d m = m d r l ; d J = r 2 d m = m r 2 d r l . {\displaystyle dm={\frac {mdr}{l}};\qquad dJ=r^{2}dm={\frac {mr^{2}dr}{l}}.}

Интегрируя, получим

J = ∫ − l / 2 l / 2 d J = 2 ∫ 0 l / 2 d J = 2 m l ∫ 0 l / 2 r 2 d r = 2 m l r 3 3 | 0 l / 2 = 2 m l l 3 24 = 1 12 m l 2 . {\displaystyle J=\int _{-l/2}^{l/2}dJ=2\int _{0}^{l/2}dJ={\frac {2m}{l}}\int _{0}^{l/2}r^{2}dr={\frac {2m}{l}}\left.{\frac {r^{3}}{3}}\right|_{0}^{l/2}={\frac {2m}{l}}{\frac {l^{3}}{24}}={\frac {1}{12}}ml^{2}.}

Тонкий стержень (ось проходит через конец)

Вывод формулы

При перемещении оси вращения из середины стержня на его конец, центр тяжести стержня перемещается относительно оси на расстояние l ⁄ 2 . По теореме Штейнера новый момент инерции будет равен

J = J 0 + m r 2 = J 0 + m (l 2) 2 = 1 12 m l 2 + 1 4 m l 2 = 1 3 m l 2 . {\displaystyle J=J_{0}+mr^{2}=J_{0}+m\left({\frac {l}{2}}\right)^{2}={\frac {1}{12}}ml^{2}+{\frac {1}{4}}ml^{2}={\frac {1}{3}}ml^{2}.}

Безразмерные моменты инерции планет и спутников

Большое значение для исследований внутренней структуры планет и их спутников имеют их безразмерные моменты инерции. Безразмерный момент инерции тела радиуса r и массы m равен отношению его момента инерции относительно оси вращения к моменту инерции материальной точки той же массы относительно неподвижной оси вращения, расположенной на расстоянии r (равному mr 2 ). Эта величина отражает распределение массы по глубине. Одним из методов её измерения у планет и спутников является определение доплеровского смещения радиосигнала, передаваемого АМС , пролетающей около данной планеты или спутника. Для тонкостенной сферы безразмерный момент инерции равен 2/3 (~0,67), для однородного шара - 0,4, и вообще тем меньше, чем большая масса тела сосредоточена у его центра. Например, у Луны безразмерный момент инерции близок к 0,4 (равен 0,391), поэтому предполагают, что она относительно однородна, её плотность с глубиной меняется мало. Безразмерный момент инерции Земли меньше, чем у однородного шара (равен 0,335), что является аргументом в пользу существования у неё плотного ядра .

Центробежный момент инерции

Центробежными моментами инерции тела по отношению к осям прямоугольной декартовой системы координат называются следующие величины :

J x y = ∫ (m) x y d m = ∫ (V) x y ρ d V , {\displaystyle J_{xy}=\int \limits _{(m)}xydm=\int \limits _{(V)}xy\rho dV,} J x z = ∫ (m) x z d m = ∫ (V) x z ρ d V , {\displaystyle J_{xz}=\int \limits _{(m)}xzdm=\int \limits _{(V)}xz\rho dV,} J y z = ∫ (m) y z d m = ∫ (V) y z ρ d V , {\displaystyle J_{yz}=\int \limits _{(m)}yzdm=\int \limits _{(V)}yz\rho dV,}

где x , y и z - координаты малого элемента тела объёмом dV , плотностью ρ и массой dm .

Ось OX называется главной осью инерции тела , если центробежные моменты инерции J xy и J xz одновременно равны нулю. Через каждую точку тела можно провести три главные оси инерции. Эти оси взаимно перпендикулярны друг другу. Моменты инерции тела относительно трёх главных осей инерции, проведённых в произвольной точке O тела, называются главными моментами инерции данного тела .

Главные оси инерции, проходящие через центр масс тела, называются главными центральными осями инерции тела , а моменты инерции относительно этих осей - его главными центральными моментами инерции . Ось симметрии однородного тела всегда является одной из его главных центральных осей инерции .

Геометрические моменты инерции

Геометрический момент инерции объёма

J V a = ∫ (V) r 2 d V , {\displaystyle J_{Va}=\int \limits _{(V)}r^{2}dV,}

где, как и ранее r - расстояние от элемента dV до оси a .

Геометрический момент инерции площади относительно оси - геометрическая характеристика тела, выражаемая формулой :

J S a = ∫ (S) r 2 d S , {\displaystyle J_{Sa}=\int \limits _{(S)}r^{2}dS,}

где интегрирование выполняется по поверхности S , а dS - элемент этой поверхности.

Размерность J Sa - длина в четвёртой степени ( d i m J S a = L 4 {\displaystyle \mathrm {dim} J_{Sa}=\mathrm {L^{4}} } ), соответственно единица измерения СИ - 4 . В строительных расчетах, литературе и сортаментах металлопроката часто указывается в см 4 .

Через геометрический момент инерции площади выражается момент сопротивления сечения:

W = J S a r m a x . {\displaystyle W={\frac {J_{Sa}}{r_{max}}}.}

Здесь r max - максимальное расстояние от поверхности до оси.

Геометрические моменты инерции площади некоторых фигур
Прямоугольника высотой h {\displaystyle h} и шириной b {\displaystyle b} : J y = b h 3 12 {\displaystyle J_{y}={\frac {bh^{3}}{12}}}

J z = h b 3 12 {\displaystyle J_{z}={\frac {hb^{3}}{12}}}

Прямоугольного коробчатого сечения высотой и шириной по внешним контурам H {\displaystyle H} и B {\displaystyle B} , а по внутренним h {\displaystyle h} и b {\displaystyle b} соответственно J z = B H 3 12 − b h 3 12 = 1 12 (B H 3 − b h 3) {\displaystyle J_{z}={\frac {BH^{3}}{12}}-{\frac {bh^{3}}{12}}={\frac {1}{12}}(BH^{3}-bh^{3})}

J y = H B 3 12 − h b 3 12 = 1 12 (H B 3 − h b 3) {\displaystyle J_{y}={\frac {HB^{3}}{12}}-{\frac {hb^{3}}{12}}={\frac {1}{12}}(HB^{3}-hb^{3})}

Круга диаметром d {\displaystyle d} J y = J z = π d 4 64 {\displaystyle J_{y}=J_{z}={\frac {\pi d^{4}}{64}}}

Момент инерции относительно плоскости

Моментом инерции твёрдого тела относительно некоторой плоскости называют скалярную величину, равную сумме произведений массы каждой точки тела на квадрат расстояния от этой точки до рассматриваемой плоскости .

Если через произвольную точку O {\displaystyle O} провести координатные оси x , y , z {\displaystyle x,y,z} , то моменты инерции относительно координатных плоскостей x O y {\displaystyle xOy} , y O z {\displaystyle yOz} и z O x {\displaystyle zOx} будут выражаться формулами:

J x O y = ∑ i = 1 n m i z i 2 , {\displaystyle J_{xOy}=\sum _{i=1}^{n}m_{i}z_{i}^{2}\ ,} J y O z = ∑ i = 1 n m i x i 2 , {\displaystyle J_{yOz}=\sum _{i=1}^{n}m_{i}x_{i}^{2}\ ,} J z O x = ∑ i = 1 n m i y i 2 . {\displaystyle J_{zOx}=\sum _{i=1}^{n}m_{i}y_{i}^{2}\ .}

В случае сплошного тела суммирование заменяется интегрированием.

Центральный момент инерции

Центральный момент инерции (момент инерции относительно точки O, момент инерции относительно полюса, полярный момент инерции ) J O {\displaystyle J_{O}} - это величина, определяемая выражением :

J a = ∫ (m) r 2 d m = ∫ (V) ρ r 2 d V , {\displaystyle J_{a}=\int \limits _{(m)}r^{2}dm=\int \limits _{(V)}\rho r^{2}dV,}

Центральный момент инерции можно выразить через главные осевые моменты инерции, а также через моменты инерции относительно плоскостей :

J O = 1 2 (J x + J y + J z) , {\displaystyle J_{O}={\frac {1}{2}}\left(J_{x}+J_{y}+J_{z}\right),} J O = J x O y + J y O z + J x O z . {\displaystyle J_{O}=J_{xOy}+J_{yOz}+J_{xOz}.}

Тензор инерции и эллипсоид инерции

Момент инерции тела относительно произвольной оси, проходящей через центр масс и имеющей направление, заданное единичным вектором s → = ‖ s x , s y , s z ‖ T , | s → | = 1 {\displaystyle {\vec {s}}=\left\Vert s_{x},s_{y},s_{z}\right\Vert ^{T},\left\vert {\vec {s}}\right\vert =1} , можно представить в виде квадратичной (билинейной) формы :

I s = s → T ⋅ J ^ ⋅ s → , {\displaystyle I_{s}={\vec {s}}^{T}\cdot {\hat {J}}\cdot {\vec {s}},\qquad } (1)

где - тензор инерции . Матрица тензора инерции симметрична, имеет размеры 3 × 3 {\displaystyle 3\times 3} и состоит из компонент центробежных моментов:

J ^ = ‖ J x x − J x y − J x z − J y x J y y − J y z − J z x − J z y J z z ‖ , {\displaystyle {\hat {J}}=\left\Vert {\begin{array}{ccc}J_{xx}&-J_{xy}&-J_{xz}\\-J_{yx}&J_{yy}&-J_{yz}\\-J_{zx}&-J_{zy}&J_{zz}\end{array}}\right\Vert ,} J x y = J y x , J x z = J z x , J z y = J y z , {\displaystyle J_{xy}=J_{yx},\quad J_{xz}=J_{zx},\quad J_{zy}=J_{yz},\quad } J x x = ∫ (m) (y 2 + z 2) d m , J y y = ∫ (m) (x 2 + z 2) d m , J z z = ∫ (m) (x 2 + y 2) d m . {\displaystyle J_{xx}=\int \limits _{(m)}(y^{2}+z^{2})dm,\quad J_{yy}=\int \limits _{(m)}(x^{2}+z^{2})dm,\quad J_{zz}=\int \limits _{(m)}(x^{2}+y^{2})dm.}

Выбором соответствующей системы координат матрица тензора инерции может быть приведена к диагональному виду. Для этого нужно решить задачу о собственных значениях для матрицы тензора J ^ {\displaystyle {\hat {J}}} :

J ^ d = Q ^ T ⋅ J ^ ⋅ Q ^ , {\displaystyle {\hat {J}}_{d}={\hat {Q}}^{T}\cdot {\hat {J}}\cdot {\hat {Q}},} J ^ d = ‖ J X 0 0 0 J Y 0 0 0 J Z ‖ , {\displaystyle {\hat {J}}_{d}=\left\Vert {\begin{array}{ccc}J_{X}&0&0\\0&J_{Y}&0\\0&0&J_{Z}\end{array}}\right\Vert ,}

где Q ^ {\displaystyle {\hat {Q}}} - ортогональная матрица перехода в собственный базис тензора инерции. В собственном базисе координатные оси направлены вдоль главных осей тензора инерции, а также совпадают с главными полуосями эллипсоида тензора инерции. Величины J X , J Y , J Z {\displaystyle J_{X},J_{Y},J_{Z}} - главные моменты инерции. Выражение (1) в собственной системе координат имеет вид:

I s = J X ⋅ s x 2 + J Y ⋅ s y 2 + J Z ⋅ s z 2 , {\displaystyle I_{s}=J_{X}\cdot s_{x}^{2}+J_{Y}\cdot s_{y}^{2}+J_{Z}\cdot s_{z}^{2},}

откуда получается уравнение эллипсоида в собственных координатах. Разделив обе части уравнения на I s {\displaystyle I_{s}}

(s x I s) 2 ⋅ J X + (s y I s) 2 ⋅ J Y + (s z I s) 2 ⋅ J Z = 1 {\displaystyle \left({s_{x} \over {\sqrt {I_{s}}}}\right)^{2}\cdot J_{X}+\left({s_{y} \over {\sqrt {I_{s}}}}\right)^{2}\cdot J_{Y}+\left({s_{z} \over {\sqrt {I_{s}}}}\right)^{2}\cdot J_{Z}=1}

и произведя замены:

ξ = s x I s , η = s y I s , ζ = s z I s , {\displaystyle \xi ={s_{x} \over {\sqrt {I_{s}}}},\eta ={s_{y} \over {\sqrt {I_{s}}}},\zeta ={s_{z} \over {\sqrt {I_{s}}}},}

получаем канонический вид уравнения эллипсоида в координатах ξ η ζ {\displaystyle \xi \eta \zeta } :

ξ 2 ⋅ J X + η 2 ⋅ J Y + ζ 2 ⋅ J Z = 1. {\displaystyle \xi ^{2}\cdot J_{X}+\eta ^{2}\cdot J_{Y}+\zeta ^{2}\cdot J_{Z}=1.}

Расстояние от центра эллипсоида до некоторой его точки связано со значением момента инерции тела вдоль прямой, проходящей через центр эллипсоида и эту точку.

Моменты инерции тела относительно параллельных осей. Теорема Гюйгенса.

Моменты инерции данного тела относи­тельно разных осей будут, вообще говоря, разными. Покажем, как зная момент инерции относительно какой-нибудь одной оси, проведен­ной в теле, найти момент инерции от­носительно любой другой оси, ей па­раллельной.

Рис.35

Проведем через центр масс С тела произвольные оси Cx"y"z", а через лю­бую точку О на оси Сх" - оси Oxyz, такие, что Оy ½½Сy", Oz ½½Cz" (рис. 35). Расстояние между осями Cz" и Оz обозначим черезd. Тогда

но, как видно из рисунка, для любой точки тела или, а. Подставляя эти значения , в выражение для и вынося общие множители d 2 и 2d за скобки, получим

В правой части равенства первая сумма равна I cz " , а вторая - массе тела М. Найдем значение третьей суммы. На основании фор­мул для координат центра масс.Так как в на­шем случае точка С является началом координат, то x C = 0 и, сле­довательно, . Окончательно получаем:

Формула выражает следующую теорему Гюйгенса :

Момент инерции тела относительно данной оси равен моменту инерции относительно оси, ей параллельной, проходящей через центр масс тела, сложенному с произведением массы всего тела на квадрат расстояния между осями.

Найдем момент инерции тела относительно оси u , проходящей через некоторую точку О (рис. 36).

Рис.36

По определению момент инерции.

Поместим в точку О начало координатных осей x, y, z . Из прямоугольного треугольника ОАМ i следует, где. И так как радиус-вектор точки, то, проектируя это равенство на ось u , получим (, - углы между осью u и осями x, y, z ).

Рис. 14.3.

Как известно из тригономет­рии

И, группируя подобные члены, содержащие косинусы одинаковых углов, получим:

Но - расстояния от точки М i до осей x, y, z, соответственно. Поэтому

где I x , I y , I z – моменты инерции тела относительно осей координат; I xy , J yz , J xz - центробежные моменты инерции относительно осей отмеченных в индексах.

Если два центробежных момента инерции, оба содержащих в индексах названия какой-нибудь одной оси, равны нулю, то эта ось называется главной осью инерции . Например, если J yz = 0 и J xz = 0, то ось z – главная ось инерции.

Так как все моменты инерции зависят от того, где находится точка О , от выбора начала координат, то обязательно надо указать для какой точки определены эти моменты инерции. Если начало координат взято в центре масс С , то все главные оси инерции называются главными центральными осями инерции.



Если в данной точке координатные оси являются главными осями инерции (центробежные моменты инерции относительно их равны нулю), то формула (2) упрощается:

Иногда по некоторым признакам нетрудно найти главные оси инерции тела.

1. Если у однородного тела имеется ось симметрии, то эта ось является главной центральной осью инерции.

Действительно. Направим координатную ось z по оси симметрии. Тогда для каждой точки тела с координатами (x i , y i , z i ) можно отыскать точку с координатами (-x i , -y i , -z i ) и поэтому центробежные моменты инерции и. Значит ось z – главная ось инерции, и центральная ось, т.к. центр масс, как известно, находится на оси симметрии. Причём, эта ось будет главной для любой точки расположенной на оси симметрии.

2. Если у однородного тела имеется плоскость симметрии, то любая ось перпендикулярная ей будет главной осью инерции для всех точек этой плоскости.

Направим ось z перпендикулярно плоскости симметрии из любой её точки О , назначив там начало координат. Тогда для каждой точки тела с координатами (x i , y i , z i ) можно найти симметричную ей точку с координатами (x i , y i , - z i ). Поэтому центробежные моменты инерции I xz и I yz будут равны нулю. Значит ось z – главная ось инерции.

Пример 9. Определим момент инерции диска относительно оси u , расположенной под углом к оси симметрии диска z (рис.37).

Рис.37

Оси x, y и z – главные центральные оси инерции, т.к. они являются осями симметрии.

Тогда, где - угол между осями u и z ; угол - угол между осями u и y , равный; угол - угол между осями u и x , равный 90°. Поэтому

Дифференциальные уравнения движения системы.

Рас­смотрим систему, состоящую из п материальных точек. Выделим какую-нибудь точку системы с массой. Обозначим равнодейству­ющую всех приложенных к точке внешних сил (и активных и реак­ций связей) через , а равнодействующую всех внутренних сил - через . Если точка имеет при этом ускорение , то по основному закону динамики

Аналогичный результат получим для любой точки. Следовательно, для всей системы будет:

Эти уравнения, из которых можно определить закон движения каждой точки системы, называются дифференциальными уравнениями движения системы в векторной форме. Уравнения являются дифференциальными, так как; входящие в правые части уравнений силы будут в общем случае зависеть от времени, координат точек системы и их скоростей.

Проектируя на какие-нибудь координатные оси, мы можем получить дифференциальные уравнения движения системы в проекциях на эти оси.

Полное решение основной задачи динамики для системы состояло бы в том, чтобы, зная заданные силы, проинтегрировать соответ­ствующие дифференциальные уравнения и определить таким путем закон движения каждой из точек системы в отдельности.

Однако такой путь решения обычно не применяется по двум причинам. Во-первых, этот путь слишком сложен и почти всегда связан с непреодолимыми математическими трудностями. Во-вторых, в большинстве случаев при решении задач механики бывает доста­точно знать некоторые суммарные характеристики движения системы в целом, а не движение каждой из ее точек в отдельности. Эти суммарные характеристики определяются с помощью общих теорем динамики системы, к изучению которых мы и перейдем.

Основная роль уравнений состоит в том, что они, или след­ствия из них, являются исходными для получения соответствующих общих теорем.

Общие теоремы динамики механической системы: теоремы о движении центра масс механической системы и об изменении количества движения, теоремы об изменении кинетического момента и кинетической энергии, -являются следствием основного уравнения динамики. Данные теоремы рассматривают не движение отдельных точек и тел, входящих в механическую систему, а некоторые интегральные характеристики, такие как движение центра масс механической системы, ее количество движения, кинетический момент и кинетическую энергию. В результате из рассмотрения исключаются неизвестные внутренние силы, а в ряде случаев и реакции связей, что существенно упрощает решения задачи.

Моментом инерции системы (тела) отно­сительно оси вращения называется физи­ческая величина, равная сумме произведе­ний масс n материальных точек системы на квадраты их расстояний до рассматри­ваемой оси:

В случае непрерывного распределения масс эта сумма сводится к интегралу

Момент инерции материальной точки:

относительно данной оси – скалярная величина, равная произведению массы точки на квадрат расст. от этой точки до оси (J=mr 2 , m – масса точки; r – расстояние от точки до оси)

Теорема Штейнера

Теорема Штейнера - формулировка

Согласно теореме Штейнера, установлено, что момент инерции тела при расчете относительно произвольно оси соответствует сумме момента инерции тела относительно такой оси, которая проходит через центр масс и является параллельной данной оси, а также плюс произведение квадрата расстояния между осями и массы тела, по следующей формуле (1):

Где в формуле принимаем соответственно величины: d – расстояние между осями ОО1║О’O1’;
J0 – момент инерции тела, рассчитанный относительно оси, что проходит сквозь центр масс и будет определяться соотношением (2):

J0 = Jd = mR2/2 (2)

Например, для обруча на рисунке момент инерции относительно оси O’O’, равен

Момент инерции прямого стержня длиной , ось перпендикулярна стержню и проходит через его конец.

10) момент импульса закон сохранения момента импульса

Моментом импульса (количества движения) материальной точки А относительно неподвижной точки О называется физическая величина, определяемая векторным произведением:

где r - радиус-вектор, проведенный из точки О в точку A, p =mv - импульс материальной точки (рис. 1); L - псевдовектор,

Рис.1

Моментом импульса относительно неподвижной оси z называется скалярная величина L z , равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки О данной оси. Момент импульса L z не зависит от положения точки О на оси z.

При вращении абсолютно твердого тела вокруг неподвижной оси z каждая точка тела движется по окружности постоянного радиуса r i со скоростью v i . Скорость v i и импульс m i v i перпендикулярны этому радиусу, т. е. радиус является плечом вектора m i v i . Значит, мы можем записать, что момент импульса отдельной частицы равен

и направлен по оси в сторону, определяемую правилом правого винта.

Зако́н сохране́ния моме́нта и́мпульса Математически выражается через векторную сумму всех моментов импульса относительно выбранной оси для замкнутой системы тел, которая остается постоянной, пока на систему не воздействуют внешние силы. В соответствии с этим момент импульса замкнутой системы в любой системе координат не изменяется со временем.

Закон сохранения момента импульса есть проявление изотропности пространства относительно поворота.

В упрощённом виде: , если система находится в равновесии.

Основной закон сохранения, динамика твердого тела

Динамика твердого тела

Вращение вокруг неподвижной оси. Момент импульса твердого тела относительно неподвижной оси вращения равен

Направление проекции совпадает с направлением т.е. определяется по правилу буравчика. Величина

называется моментом инерции твердого тела относительно Продифференцировав , получим

Это уравнение называют основным уравнением динамики вращательного движения твердого тела вокруг неподвижной оси. Вычислим еще кинетическую энергию вращающегося твердого тела:

и работу внешней силы при повороте тела:

Плоское движение твердого тела. Плоское движение есть суперпозиция поступательного движенияцентра масс и вращательного движения в системе центра масс (см. разд. 1.2). Движение центра масс описываетсявторым законом Ньютона и определяется результирующей внешней силой (уравнение (11)).Вращательное движение в системе центра масс подчиняется уравнению (39), в котором надо учитывать только реальные внешние силы, так как момент сил инерции относительно центра масс равен нулю (аналогично моменту сил тяжести, пример 1 из разд. 1.6). Кинетическая энергия плоского движения равна уравнение Момент импульса относительно неподвижной оси, перпендикулярной плоскости движения, вычисляется по формуле (см. уравнение где - плечо скорости центра масс относительно оси, а знаки определяются выбором положительного направления вращения.

Движение с неподвижной точкой. Угловая скорость вращения, направленная вдоль оси вращения, меняет свое направление как в пространстве, так и по отношению к самому твердому телу. Уравнение движения

которое называют основным уравнением движения твердого тела с неподвижной точкой, позволяетузнать, как изменяется момент импульса Так как вектор в общем случае не параллелен вектору то для

замыкания уравнений движения надо научиться связывать эти величины друг с другом.

Гироскопы. Гироскопом называют твердое тело, быстро вращающееся относительно своей оси симметрии. Задачу о движении оси гироскопа можно решать в гироскопическом приближении: оба вектора направлены вдоль оси симметрии. Уравновешенный гироскоп (закрепленный в центре масс) обладает свойством безынерционно его ось перестает двигаться, как только исчезает внешнее воздействие ( обращается в нуль). Это позволяет использовать гироскоп для сохранения ориентации в пространстве.

На тяжелый гироскоп (рис. 12), у которого центр масс смещен на расстояние от точки закрепления действует момент силы тяжедти, направленный перпендикулярно Так как то и ось гироскопа совершают регулярное вращение вокруг вертикальной оси (прецессия гироскопа).

Конец вектора вращается по горизонтальной окружности радиусом а с угловой скоростью

Угловая скорость прецессии не зависит от угла наклона оси а.

Зако́ны сохране́ния - фундаментальные физические законы, согласно которым при определённых условиях некоторые измеримые физические величины, характеризующие замкнутую физическую систему, не изменяются с течением времени.

· Закон сохранения энергии

· Закон сохранения импульса

· Закон сохранения момента импульса

· Закон сохранения массы

· Закон сохранения электрического заряда

· Закон сохранения лептонного числа

· Закон сохранения барионного числа

· Закон сохранения чётности

Момент силы

Моментом силы относительно оси вращения называется физическая величина, равная про­изведению силы на ее плечо.

Момент силы определяют по формуле:

М - FI , где F - сила, I - плечо силы.

Плечом силы называется кратчайшее расстояние от линии действия силы до оси вращения тела.

Момент силы характеризует вращающее действие силы. Это действие зависит как от силы, так и от плеча. Чем больше плечо, тем меньшую силу надо приложить,

За единицу момента силы в СИ принимается момент силы в 1 Н, плечо которой равно 1м - ньютон-метр (Н м).

Правило моментов

Твердое тело, способное вращаться вокруг неподвижной оси, находится в равновесии, если момент силы М, вращающей его по часовой стрелке, равен моменту силы М2, вращающей его против часовой стрелки:

М1 = -М2 или F 1 ll = - F 2 l 2 .

Момент пары сил одинаков относительно любой оси, перпендикулярной к плоскости пары. Суммарный момент М пары всегда равен произведению одной из сил F на расстояние I между силами, которое называется плечом пары, независимо от того, на какие отрезки и /2 разделяет положение оси плечо пары:

M = Fll + Fl2=F(l1 + l2) = Fl.

Если тело вращается вокруг неподвижной оси z с угловой скоростью , то линейная скорость i -й точки , R i – расстояние до оси вращения. Следовательно,

Здесь I c – момент инерции относительно мгновенной оси вращения, проходящей через центр инерции.

Работа момента сил.

Работа силы.
Работа постоянной силы, действующей на прямолинейно движущееся тело
, где - перемещение тела, - сила, действующая на тело.

В общем случае, работа переменной силы, действующей на тело, движущееся по криволинейной траектории . Работа измеряется в Джоулях [Дж].

Работа момента сил, действующего на тело, вращающееся вокруг неподвижной оси , где - момент силы, - угол поворота.
В общем случае .
Совершенная нат телом работа переходит в его кинетическую энергию.

Механические колебания.

Колеба́ния - повторяющийся в той или иной степени во временипроцесс изменения состояний системы.

Колебания почти всегда связаны с попеременным превращением энергии одной формы проявления вдругую форму.

Отличие колебания от волны.

Колебания различной физической природы имеют много общих закономерностей и тесно взаимосвязаны cволнами. Поэтому исследованиями этих закономерностей занимается обобщённая теория колебаний иволн. Принципиальное отличие от волн: при колебаниях не происходит переноса энергии, это, так сказать, «местные» преобразования энергии.

Характеристики колебаний

Амплитуда (м) - максимальное отклонение колеблющейся величины от некоторого усреднённого еёзначения для системы.

Промежуток времени (сек) , через который повторяются какие-либо показатели состояния системы(система совершает одно полное колебание), называют периодом колебаний.

Число колебаний в единицу времени называется частотой колебаний (Гц, сек -1) .

Период колебаний и частота – обратные величины;

В круговых или циклических процессах вместо характеристики «частота» используется понятие круговая илициклическая частота (Гц, сек -1 , об/сек) , показывающая число колебаний за время 2π:

Фаза колебаний -- определяет смещение в любой момент времени, т.е. определяет состояниеколебательной системы.

Маятник мат физ пруж

. Пружинный маятник - это груз массой m, который подвешен на абсолютно упругой пружине и совершает гармонические колебания под действием упругой силы F = –kx, где k - жесткость пружины. Уравнение движения маятника имеет вид

Из формулы (1) вытекает, что пружинный маятник совершает гармонические колебания по закону х = Асоs(ω 0 t+φ) с циклической частотой

и периодом

Формула (3) верна для упругих колебаний в границах, в которых выполняется закон Гука, т. е. если масса пружины мала по сравнению с массой тела. Потенциальная энергия пружинного маятника, используя (2) и формулу потенциальной энергии предыдущего раздела, равна

2. Физический маятник - это твердое тело, которое совершает колебания под действием силы тяжести вокруг неподвижной горизонтальной оси, которая проходит через точку О, не совпадающую с центром масс С тела (рис. 1).

Рис.1

Если маятник из положения равновесия отклонили на некоторый угол α, то, используя уравнение динамики вращательного движения твердого тела, момент M возвращающей силы

где J - момент инерции маятника относительно оси, которая проходит через точку подвеса О, l – расстояние между осью и центром масс маятника, F τ ≈ –mgsinα ≈ –mgα - возвращающая сила (знак минус указывает на то, что направления F τ и α всегда противоположны; sinα ≈ α поскольку колебания маятника считаются малыми, т.е. маятника из положения равновесия отклоняется на малые углы). Уравнение (4) запишем как

Принимая

получим уравнение

идентичное с (1), решение которого (1) найдем и запишем как:

Из формулы (6) вытекает, что при малых колебаниях физический маятник совершает гармонические колебания с циклической частотой ω 0 и периодом

где введена величина L=J/(ml ) - .

Точка О" на продолжении прямой ОС, которая отстоит от точки О подвеса маятника на расстоянии приведенной длины L, называетсяцентром качаний физического маятника (рис. 1). Применяя теорему Штейнера для момента инерции оси, найдем

т. е. ОО" всегда больше ОС. Точка подвеса О маятника и центр качаний О" имеют свойство взаимозаменяемости : если точку подвеса перенести в центр качаний, то прежняя точка О подвеса будет новым центром качаний, и при этом не изменится период колебаний физического маятника.

3. Математический маятник - это идеализированная система, состоящая из материальной точки массой m, которая подвешена на нерастяжимой невесомой нити, и которая колеблется под действием силы тяжести. Хорошее приближение математического маятника есть небольшой тяжелый шарик, который подвешен на длинной тонкой нити. Момент инерции математического маятника

где l - длина маятника.

Поскольку математический маятник есть частный случай физического маятника, если предположить, что вся его масса сосредоточена в одной точке - центре масс, то, подставив (8) в (7), найдем выражение для периода малых колебаний математического маятника

Сопоставляя формулы (7) и (9), видим, что если приведенная длина L физического маятника равна длине l математического маятника, то периоды колебаний этих маятников одинаковы. Значит, приведенная длина физического маятника - это длина такого математического маятника, у которого период колебаний совпадает с периодом колебаний данного физического маятника.

Гар. колебания и харак.

Колебаниями называются движения или процессы, характеризующиеся определенной повторяемостью во времени. Колебательные процессы имеют широкое распространение в природе и технике, например качание маятника часов, переменный электрический ток и т. Д

Простейшим типом колебаний являются гармонические колебания - колебания, при которых колеблющаяся величина изменяется со временем по закону синуса (косинуса). Гармонические колебания некоторой величины s описываются уравнением вида

где ω 0 - круговая (циклическая) частота , А - максимальное значение колеблющейся величины, называемое амплитудой колебания , φ - начальная фаза колебания в момент времени t=0, (ω 0 t+φ) - фаза колебания в момент времени t. Фаза колебания есть значение колеблющейся величины в данный момент времени. Так как косинус имеет значение в пределах от +1 до –1, то s может принимать значения от +А до –А.

Определенные состояния системы, которая совершает гармонические колебания, повторяются через промежуток времени Т, имеющий название период колебания , за который фаза колебания получает приращение (изменение) 2π, т. е.

Величина, обратная периоду колебаний,

т. е. число полных колебаний, которые совершаются в единицу времени, называется частотой колебаний . Сопоставляя (2) и (3), найдем

Единица частоты - герц (Гц): 1 Гц - частота периодического процесса, во время которого за 1 с совершается один цикл процесса.

Амплитуда колебаний

Амплитудой гармонического колебания называется наибольшее значение смещения тела от положения равновесия. Амплитуда может принимать различные значения. Она будет зависеть от того, насколько мы сместим тело в начальный момент времени от положения равновесия.

Амплитуда определяется начальными условиями, то есть энергией сообщаемой телу в начальный момент времени. Так как синус и косинус могут принимать значения в диапазоне от -1 до 1, то в уравнении должен присутствовать множитель Xm, выражающий амплитуду колебаний. Уравнение движения при гармонических колебаниях:

x = Xm*cos(ω0*t).

Затух. колеб и их хар

Затухающие колебания

Затуханием колебаний называется постепенное уменьшение амплитуды колебаний с течением времени, обусловленное потерей энергии колебательной системой.

Собственные колебания без затухания – это идеализация. Причины затухания могут быть разные. В механической системе к затуханию колебаний приводит наличие трения. В электромагнитном контуре к уменьшению энергии колебаний приводят тепловые потери в проводниках, образующих систему. Когда израсходуется вся энергия, запасенная в колебательной системе, колебания прекратятся. Поэтому амплитуда затухающих колебаний уменьшается, пока не станет равной нулю.

где β – коэффициент затухания

В новых обозначениях дифференциальное уравнение затухающих колебаний имеет вид:

. где β – коэффициент затухания , где ω 0 – частота незатухающих свободных колебаний в отсутствии потерь энергии в колебательной системе.

Это линейное дифференциальное уравнение второго порядка.

Частота затухающих колебаний :

В любой колебательной системе затухание приводит к уменьшению частоты и соответственно увеличению периода колебаний.

(физический смысл имеет только вещественный корень, поэтому ).

Период затухающих колебаний:

.

Смысл, который вкладывался в понятие периода для незатухающих колебаний, не подходит для затухающих колебаний, так как колебательная система никогда не возвращается в исходное состояние из-за потерь колебательной энергии. При наличии трения колебания идут медленнее: .

Периодом затухающих колебаний называется минимальный промежуток времени, за который система проходит дважды положение равновесия в одном направлении.

Амплитуда затухающих колебаний :

Для пружинного маятника .

Амплитуда затухающих колебаний – величина не постоянная, а изменяющаяся со временем тем быстрее, чем больше коэффициент β. Поэтому определение для амплитуды, данное ранее для незатухающих свободных колебаний, для затухающих колебаний надо изменить.

При небольших затуханиях амплитудой затухающих колебаний называется наибольшее отклонение от положения равновесия за период.

Изменение амплитуды затухающих колебаний происходит по экспоненциальному закону:

Пусть за время τ амплитуда колебаний уменьшится в "e " раз ("е" – основание натурального логарифма, е ≈ 2,718). Тогда, с одной стороны, , а с другой стороны, расписав амплитуды А зат. (t) и А зат. (t+τ), имеем . Из этих соотношений следует βτ = 1, отсюда

Вынужденные колеб.

МОМЕНТОМ ИНЕРЦИИ I тела относительно точки, оси или плоскости называется сумма произведений массы точек тела m i , на квадраты их расстояний r i до точки, оси или плоскости:

Момент инерции тела относительно оси является мерой инерции тела во вращательном движении вокруг этой оси.

Момент инерции тела может быть также выражен через массу М тела и его радиус инерции r:

МОМЕНТЫ ИНЕРЦИИ ОТНОСИТЕЛЬНО ОСЕЙ, ПЛОСКОСТЕЙ И НАЧАЛА ДЕКАРТОВЫХ КООРДИНАТ.

Момент инерции относительно начала координат (полярный момент инерции):

СВЯЗЬ МЕЖДУ ОСЕВЫМИ, ПЛОСКОСТНЫМИ И ПОЛЯРНЫМ МОМЕНТАМИ ИНЕРЦИИ:

Значения осевых моментов инерции некоторых геометрических тел приведены в табл. 1.

Таблица 1. Момент инерции некоторых тел
Фигура или тело

При с→0 получается прямоугольная пластина

ИЗМЕНЕНИЕ МОМЕНТОВ ИНЕРЦИИ ПРИ ПЕРЕМЕНЕ ОСЕЙ

Момент инерции I u 1 относительно оси u 1 , параллельной данной оси u (рис. 1):

где I u - момент инерции тела относительно оси u; l(l 1) - расстояние от оси u (от оси u 1) до параллельной им оси u с, проходящей через центр масс тела; а - расстояние между осями u и u 1 .

Рисунок 1.

Если ось u центральная (l=0), то

т. е. для любой группы параллельных осей момент инерции относительно центральной оси наименьший.

Момент инерции I u относительно оси u, составляющей углы α, β, γ с осями декартовых координат х, у, z (рис. 2):

Рисунок 2.

Оси х, у, z главные, если

Момент инерции относительно оси u, составляющей углы α, β, γ c главными осями инерции х, у, z:

ИЗМЕНЕНИЕ ЦЕНТРОБЕЖНЫХ МОМЕНТОВ ИНЕРЦИИ ПРИ ПАРАЛЛЕЛЬНОМ ПЕРЕНОСЕ ОСЕЙ:

где - центробежный момент инерции относительно центральных осей х с, y с, параллельных осям х, у; М - масса тела; x с, y с - координаты центра масс в системе осей х, у.

ИЗМЕНЕНИЕ ЦЕНТРОБЕЖНОГО МОМЕНТА ИНЕРЦИИ ПРИ ПОВОРОТЕ ОСЕЙ x, y ВОКРУГ ОСИ z НА УГОЛ α В ПОЛОЖЕНИЕ x 1 y 1 (рис. 3):

Рисунок 3.

ОПРЕДЕЛЕНИЕ ПОЛОЖЕНИЯ ГЛАВНЫХ ОСЕЙ ИНЕРЦИИ. Ось материальной симметрии тела - главная ось инерции тела.

Если плоскость xОz является плоскостью материальной симметрии тела, то любая из осей y - главная ось инерции тела.

Если положение одной из главных осей z гл известно, то положение двух других осей x гл и y гл определяется поворотом осей х и у вокруг оси z гл на угол φ (рис. 3):

ЭЛЛИПСОИД И ПАРАЛЛЕЛЕПИПЕД ИНЕРЦИИ. Эллипсоидом инерции называется эллипсоид, оси симметрии которого совпадают с главными центральными осями тела x гл, y гл, z гл, а полуоси а х, а у, а z равны соответственно:

где r уО z , r х Oz , r xOy - радиусы инерции тела относительно главных плоскостей инерции.

Параллелепипедом инерции называется параллелепипед, описанный вокруг эллипсоида инерции и имеющий с ним общие оси симметрии (рис. 4).

Рисунок 4.

РЕДУЦИРОВАНИЕ (ЗАМЕНА С ЦЕЛЬЮ УПРОЩЕНИЯ РАСЧЕТА) ТВЕРДОГО ТЕЛА СОСРЕДОТОЧЕННЫМИ МАССАМИ . При вычислении осевых, плоскостных, центробежных и полярных моментов инерции тело массой М можно редуцировать восемью сосредоточенными массами М/8, расположенными в вершинах параллелепипеда инерции. Моменты инерции относительно любых осей, плоскостей, полюсов вычисляются по координатам вершин параллелепипеда инерции x i , y i , z i (i=1, 2, ..., 8) по формулам:

ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ МОМЕНТОВ ИНЕРЦИИ

1. Определение моментов инерции тел вращения с использованием дифференциального уравнения вращения - см. формулы ("Вращательное движение твердого тела") .

Исследуемое тело закрепляется на горизонтальной оси х, совпадающей с его осью симметрии, и приводится во вращение вокруг нее с помощью груза Р, прикрепленного к гибкой нити, навернутой на исследуемое тело (рис. 5), при этом замеряется время t опускания груза на высоту h. Для исключения влияния трения в точках закрепления тела на оси х опыт производится несколько раз при разных значениях веса груза Р.

Рисунок 5.

При двух опытах с грузами Р 1 и Р 2

2. Экспериментальное определение моментов инерции тел посредством изучения колебаний физического маятника (см. 2.8.3) .

Исследуемое тело закрепляют на горизонтальной оси х (нецентральной) и замеряют, период малых колебаний около этой оси Т. Момент инерции относительно оси х определится по формуле

где Р - вес тела; l 0 - расстояние от оси вращения до центра масс С тела.

Рассмотрим материальную точку массой m, которая находится на расстоянии r, от неподвижной оси (рис. 26). Моментом инерции J материальной точки относительно оси называется скалярная физическая величина, равная произведению массы m на квадрат расстояния r до этой оси:

J = mr 2 (75)

Момент инерции системы N материальных точек будет равен сумме моментов инерции отдельных точек:

Рис. 26.

К определению момента инерции точки.

Если масса распределена в пространстве непрерывно, то суммирование заменяется интегрированием. Тело разбивается на элементарные объемы dv, каждый из которых обладает массой dm.

В результате получается следующее выражение:

Для однородного по объему тела плотность ρ постоянна, и записав элементарную массу в виде:

dm = ρdv, преобразуем формулу (70) следующим образом:

Размерность момента инерции - кг*м 2 .

Момент инерции тела является мерой инертности тела во вращательном движении, подобно тому, как масса тела является мерой его инертности при поступательном движении.

Момент инерции — это мера инертных свойств твердого тела при вращательном движении, зависящая от распределения массы относительно оси вращения. Иными словами, момент инерции зависит от массы, формы, размеров тела и положения оси вращения.

Всякое тело, независимо от того, вращается оно или покоится, обладает моментом инерции относительно любой оси, подобно тому, как тело обладает массой независимо от того, движется оно или находиться в покое. Аналогично массе момент инерции является величиной аддитивной.

В некоторых случаях теоретический расчёт момента инерции достаточно прост. Ниже приведены моменты инерции некоторых сплошных тел правильной геометрической формы относительно оси, проходящей через центр тяжести.

Момент инерции бесконечно плоского диска радиуса R относительно оси, перпендикулярной плоскости диска :

Момент инерции шара радиуса R :

Момент инерции стержня длиной L относительно оси, проходящей через середину стержня перпендикулярно ему:

Момент инерции бесконечно тонкого обруча радиуса R относительно оси, перпендикулярной его плоскости:

Момент инерции тела относительно произвольной оси рассчитывается с помощью теоремы Штейнера :

Момент инерции тела относительно произвольной оси равен сумме момента инерции относительно оси, проходящей через центр масс параллельно данной, и произведения массы тела на квадрат расстояния между осями.

Рассчитаем при помощи теоремы Штейнера момент инерции стержня длиной L относительно оси, проходящей через конец перпендикулярно ему (рис. 27).

К расчету момента инерции стержня

Согласно теореме Штейнера, момент инерции стержня относительно оси O′O′ равен моменту инерции относительно оси OO плюс md 2 . Отсюда получаем:


Очевидно: момент инерции неодинаков относительно разных осей, и поэтому, решая задачи на динамику вращательного движения, момент инерции тела относительно интересующей нас оси каждый раз приходится искать отдельно. Так, например, при конструировании технических устройств, содержащих вращающиеся детали (на железнодорожном транспорте, в самолетостроении, электротехнике и т. д.), требуется знание величин моментов инерции этих деталей. При сложной форме тела теоретический расчет его момента инерции может оказаться трудно выполнимым. В этих случаях предпочитают измерить момент инерции нестандартной детали опытным путем.

Момент силы F относительно точки O