Временные ряды, многомерные методы статистики и методы теории катастроф. Анализ временных рядов и прогнозирование в Excel на примере Структурные компоненты временного ряда

3.3.1. Методы анализа и прогнозирования временных рядов

Модели стационарных и нестационарных временных рядов. Пусть Рассмотрим временной ряд X (t ). Пусть сначала временной ряд принимает числовые значения. Это могут быть, например, цены на батон хлеба в соседнем магазине или курс обмена доллара на рубли в ближайшем обменном пункте. Обычно в поведении временного ряда выявляют две основные тенденции - тренд и периодические колебания.

При этом под трендом понимают зависимость от времени линейного, квадратичного или иного типа, которую выявляют тем или иным способом сглаживания (например, экспоненциального сглаживания) либо расчетным путем, в частности, с помощью метода наименьших квадратов. Другими словами, тренд - это очищенная от случайностей основная тенденция временного ряда.

Временной ряд обычно колеблется вокруг тренда, причем отклонения от тренда часто обнаруживают правильность. Часто это связано с естественной или назначенной периодичностью, например, сезонной или недельной, месячной или квартальной (например, в соответствии с графиками выплаты заплаты и уплаты налогов). Иногда наличие периодичности и тем более ее причины неясны, и задача статистика - выяснить, действительно ли имеется периодичность.

Элементарные методы оценки характеристик временных рядов обычно достаточно подробно рассматриваются в курсах "Общей теории статистики" (см., например, учебники ), поэтому нет необходимости подробно разбирать их здесь. О некоторых современных методах оценивания длины периода и самой периодической составляющей речь пойдет ниже в подразделе 3.3.2.

Характеристики временных рядов. Для более подробного изучения временных рядов используются вероятностно-статистические модели. При этом временной ряд X (t ) рассматривается как случайный процесс (с дискретным временем). Основными характеристиками X (t ) являются математическое ожидание X (t ), т.е.

дисперсия X (t ), т.е.

и автокорреляционная функция временного ряда X (t )

т.е. функция двух переменных, равная коэффициенту корреляции между двумя значениями временного ряда X (t ) и X (s ).

В теоретических и прикладных исследованиях рассматривают широкий спектр моделей временных рядов. Выделим сначала стационарные модели. В них совместные функции распределения для любого числа моментов времени k , а потому и все перечисленные выше характеристики временного ряда не меняются со временем . В частности, математическое ожидание и дисперсия являются постоянными величинами, автокорреляционная функция зависит только от разности t - s. Временные ряды, не являющиеся стационарными, называются нестационарными.

Линейные регрессионные модели с гомоскедастичными и гетероскедастичными, независимыми и автокоррелированными остатками. Как видно из сказанного выше, основное - это "очистка" временного ряда от случайных отклонений, т.е. оценивание математического ожидания. В отличие от простейших моделей регрессионного анализа, рассмотренных в главе 3.2, здесь естественным образом появляются более сложные модели. Например, дисперсия может зависеть от времени. Такие модели называют гетероскедастичными, а те, в которых нет зависимости от времени - гомоскедастичными. (Точнее говоря, эти термины могут относиться не только к переменной "время", но и к другим переменным.)

Далее, в главе 3.2 предполагалось, что погрешности независимы между собой. В терминах настоящей главы это означало бы, что автокорреляционная функция должна быть вырожденной - равняться 1 при равенстве аргументов и 0 при их неравенстве. Ясно, что для реальных временных рядов так бывает отнюдь не всегда. Если естественный ход изменений наблюдаемого процесса является достаточно быстрым по сравнению с интервалом между последовательными наблюдениями, то можно ожидать "затухания" автокорреляции" и получения практически независимых остатков, в противном случае остатки будут автокоррелированы.

Идентификация моделей. Под идентификацией моделей обычно понимают выявление их структуры и оценивание параметров. Поскольку структура - это тоже параметр, хотя и нечисловой, то речь идет об одной из типовых задач прикладной статистики - оценивании параметров.

Проще всего задача оценивания решается для линейных (по параметрам) моделей с гомоскедастичными независимыми остатками. Восстановление зависимостей во временных рядах может быть проведено на основе методов наименьших квадратов и наименьших модулей оценивания параметров в моделях линейной (по параметрам) регрессии. На случай временных рядов переносятся результаты, связанные с оцениванием необходимого набора регрессоров, в частности, легко получить предельное геометрическое распределение оценки степени тригонометрического полинома.

Однако на более общую ситуацию такого простого переноса сделать нельзя. Так, например, в случае временного ряда с гетероскедастичными и автокоррелированными остатками снова можно воспользоваться общим подходом метода наименьших квадратов, однако система уравнений метода наименьших квадратов и, естественно, ее решение будут иными. Формулы в терминах матричной алгебры, о которых упоминалось в главе 3.2, будут отличаться. Поэтому рассматриваемый метод называется "обобщенный метод наименьших квадратов (ОМНК)".

Замечание. Как уже отмечалось в главе 3.2, простейшая модель метода наименьших квадратов допускает весьма далекие обобщения, особенно в области системам одновременных эконометрических уравнений для временных рядов. Для понимания соответствующей теории и алгоритмов необходимо владение методами матричной алгебры. Поэтому мы отсылаем тех, кому это интересно, к литературе по системам эконометрических уравнений и непосредственно по временным рядам , в которой особенно много интересуются спектральной теорией, т.е. выделением сигнала из шума и разложением его на гармоники. Подчеркнем еще раз, что за каждой главой настоящей книги стоит большая область научных и прикладных исследований, вполне достойная того, чтобы посвятить ей много усилий. Однако из-за ограниченности объема книги мы вынуждены изложение сделать конспективным.

Системы эконометрических уравнений. В качестве первоначального примера рассмотрим эконометрическую модель временного ряда, описывающего рост индекса потребительских цен (индекса инфляции). Пусть I (t ) - рост цен в месяц t (подробнее об этой проблематике см. главу 7 в ). По мнению некоторых экономистов естественно предположить, что

I (t ) = с I (t - 1) + a + bS (t - 4) + e , (1)

где I (t -1) - рост цен в предыдущий месяц (а с - некоторый коэффициент затухания, предполагающий, что при отсутствии внешний воздействий рост цен прекратится), a - константа (она соответствует линейному изменению величины I (t ) со временем), bS (t- 4) - слагаемое, соответствующее влиянию эмиссии денег (т.е. увеличения объема денег в экономике страны, осуществленному Центральным Банком) в размере S (t- 4) и пропорциональное эмиссии с коэффициентом b , причем это влияние проявляется не сразу, а через 4 месяца; наконец, e - это неизбежная погрешность.

Модель (1), несмотря на свою простоту, демонстрирует многие характерные черты гораздо более сложных эконометрических моделей. Во-первых, обратим внимание на то, что некоторые переменные определяются (рассчитываются) внутри модели, такие, как I (t ). Их называют эндогенными (внутренними). Другие задаются извне (это экзогенные переменные). Иногда, как в теории управления, среди экзогенных переменных, выделяют управляемые переменные - те, с помощью выбора значений которых можно привести систему в нужное состояние.

Во-вторых, в соотношении (1) появляются переменные новых типов - с лагами, т.е. аргументы в переменных относятся не к текущему моменту времени, а к некоторым прошлым моментам.

В-третьих, составление эконометрической модели типа (1) - это отнюдь не рутинная операция. Например, запаздывание именно на 4 месяца в связанном с эмиссией денег слагаемом bS (t- 4) - это результат достаточно изощренной предварительной статистической обработки. Далее, требует изучения вопрос зависимости или независимости величин S (t- 4) и I(t ) в различные моменты времени t . От решения этого вопроса зависит, как выше уже отмечалось, конкретная реализация процедуры метода наименьших квадратов.

С другой стороны, в модели (1) всего 3 неизвестных параметра, и постановку метода наименьших квадратов выписать нетрудно:

Проблема идентифицируемости. Представим теперь модель тапа (1) с большим числом эндогенных и экзогенных переменных, с лагами и сложной внутренней структурой. Вообще говоря, ниоткуда не следует, что существует хотя бы одно решение у такой системы. Поэтому возникает не одна, а две проблемы. Есть ли хоть одно решение (проблема идентифицируемости)? Если да, то как найти наилучшее решение из возможных? (Это - проблема статистической оценки параметров.)

И первая, и вторая задача достаточно сложны. Для решения обеих задач разработано множество методов, обычно достаточно сложных, лишь часть из которых имеет научное обоснование. В частности, достаточно часто пользуются статистическими оценками, не являющимися состоятельными (строго говоря, их даже нельзя назвать оценками).

Коротко опишем некоторые распространенные приемы при работе с системами линейных эконометрических уравнений.

Система линейных одновременных эконометрических уравнений. Чисто формально можно все переменные выразить через переменные, зависящие только от текущего момента времени. Например, в случае уравнения (1) достаточно положить

H (t ) = I (t- 1), G (t) = S (t- 4).

Тогда уравнение примет вид

I (t ) = с H (t ) + a + bG (t ) + e . (2)

Отметим здесь же возможность использования регрессионных моделей с переменной структурой путем введения фиктивных переменных. Эти переменные при одних значениях времени (скажем, начальных) принимают заметные значения, а при других - сходят на нет (становятся фактически равными 0). В результате формально (математически) одна и та же модель описывает совсем разные зависимости.

Косвенный, двухшаговый и трехшаговый методы наименьших квадратов. Как уже отмечалось, разработана масса методов эвристического анализа систем эконометрических уравнений. Они предназначены для решения тех или иных проблем, возникающих при попытках найти численные решения систем уравнений.

Одна из проблем связана с наличием априорных ограничений на оцениваемые параметры. Например, доход домохозяйства может быть потрачен либо на потребление, либо на сбережение. Значит, сумма долей этих двух видов трат априори равна 1. А в системе эконометрических уравнений эти доли могут участвовать независимо. Возникает мысль оценить их методом наименьших квадратов, не обращая внимания на априорное ограничение, а потом подкорректировать. Такой подход называют косвенным методом наименьших квадратов.

Двухшаговый метод наименьших квадратов состоит в том, что оценивают параметры отдельного уравнения системы, а не рассматривают систему в целом. В то же время трехшаговый метод наименьших квадратов применяется для оценки параметров системы одновременных уравнений в целом. Сначала к каждому уравнению применяется двухшаговый метод с целью оценить коэффициенты и погрешности каждого уравнения, а затем построить оценку для ковариационной матрицы погрешностей. После этого для оценивания коэффициентов всей системы применяется обобщенный метод наименьших квадратов.

Менеджеру и экономисту не следует становиться специалистом по составлению и решению систем эконометрических уравнений, даже с помощью тех или иных программных систем, но он должен быть осведомлен о возможностях этого направления эконометрики, чтобы в случае производственной необходимости квалифицированно сформулировать задание для специалистов по прикладной статистике.

От оценивания тренда (основной тенденции) перейдем ко второй основной задаче эконометрики временных рядов - оцениванию периода (цикла).

Предыдущая

Цели анализа временных рядов. При практическом изучении временных радов на основании экономических данных на определенном промежутке времени эконометрист должен сделать выводы о свойствах этого ряда и о вероятностном механизме, порождающем этот ряд. Чаще всего при изучении временных рядов ставятся следующие цели:

1. Краткое (сжатое) описание характерных особенностей ряда.

2. Подбор статистической модели, описывающей временной ряд.

3. Предсказание будущих значений на основе прошлых наблюдений.

4. Управление процессом, порождающим временной ряд.

На практике эти и подобные цели достижимы далеко не всегда и далеко не в полной мере. Часто этому препятствует недостаточный объем наблюдений из-за ограниченного времени наблюдений. Еще чаще – изменяющаяся с течением времени статистическая структура временного ряда.

Стадии анализа временных рядов. Обычно при практическом анализе временных рядов последовательно проходят следующие этапы:

1. Графическое представление и описание поведения временного рада.

2. Выделение и удаление закономерных составляющих временного рада, зависящих от времени: тренда, сезонных и циклических составляющих.

3. Выделение и удаление низко- или высокочастотных составляющих процесса (фильтрация).

4. Исследование случайной составляющей временного ряда, оставшейся после удаления перечисленных выше составляющих.

5. Построение (подбор) математической модели для описания случайной составляющей и проверка ее адекватности.

6. Прогнозирование будущего развития процесса, представленного временным рядом.

7. Исследование взаимодействий между различными временными радами.

Для решения этих задач существует большое количество различных методов. Из них наиболее распространенными являются следующие:

8. Корреляционный анализ, позволяющий выявить существенные периодические зависимости и их лаги (задержки) внутри одного процесса (автокорреляция) или между несколькими процессами (кросскорреляция).

9. Спектральный анализ, позволяющий находить периодические и квазипериодические составляющие временного ряда.

10. Сглаживание и фильтрация, предназначенные для преобразования временных рядов с целью удаления из них высокочастотных или сезонных колебаний.

12. Прогнозирование, позволяющее на основе подобранной модели поведения временного рада предсказывать его значения в будущем.

Модели тренда

простейшие модели тренда. Приведем модели трендов, наиболее часто используемые при анализе экономических временных рядов, а также во многих других областях. Во-первых, это простая линейная модель

где а 0 , а 1 – коэффициенты модели тренда;

t – время.

В качестве единицы времени, может быть, час, день (сутки), неделя, месяц, квартал или год. Модель 269, несмотря на свою простоту, оказывается полезной во многих реальных задачах. Если нелинейный характер тренда очевиден, то может подойти одна из следующих моделей:

1. Полиномиальная:

(270)

где значение степени полинома п в практических задачах редко превышает 5;

2. Логарифмическая:

Эта модель чаще всего применяется для данных, имеющих тенденцию сохранять постоянные темпы прироста;

3. Логистическая:

(272)

4. Гомперца

(273), где

Две последние модели задают кривые тренда S-образной формы. Они соответствуют процессам с постепенно возрастающими темпами роста в начальной стадии и постепенно затухающимитемпами роста в конце. Необходимость подобных моделей обусловлена невозможностью многих экономических процессов продолжительное время развиваться с постоянными темпами роста или по полиномиальным моделям, в связи с их довольно быстрым ростом (или уменьшением).

При прогнозировании тренд используют в первую очередь для долговременных прогнозов. Точность краткосрочных прогнозов, основанных только на подобранной кривой тренда, как правило, недостаточна.

Для оценки и удаления трендов из временных рядов чаще всего используется метод наименьших квадратов. Этот метод достаточно подробно рассматривался во втором разделе пособия в задачах линейного регрессионного анализа. Значения временного ряда рассматриваюткак отклик (зависимую переменную), а время t – какфактор, влияющий на отклик (независимую переменную).

Для временных рядов характерна взаимная зависимость его членов (по крайней мере, не далеко отстоящих по времени) и это является существенным отличием от обычного регрессионного анализа, для которого все наблюдения предполагаются независимыми. Тем не менее, оценки тренда и в этих условиях обычно оказываются разумными, если выбрана адекватная модель тренда и если среди наблюдений нет больших выбросов. Упомянутые выше нарушения ограничений регрессионного анализа сказываются не столько на значениях оценок, сколько наих статистических свойствах. Так, при наличии заметной зависимости между членами временного ряда оценки дисперсии, основанные на остаточнойсумме квадратов, дают неправильные результаты. Неправильными оказываются и доверительные интервалы для коэффициентов модели, и т.д. В лучшем случае их можно рассматривать как очень приближенные.

Введение

В данной главе рассматриваются задачи описания упорядоченных данных, полученных последовательно (во времени). Вообще говоря, упорядоченность может иметь место не только во времени, но и в пространстве, например, диаметр нити как функция её длины (одномерный случай), значение температуры воздуха как функция пространственных координат (трёхмерный случай).

В отличие от регрессионного анализа, где порядок строк в матрице наблюдений может быть произвольным, во временных рядах важна упорядоченность, а следовательно, интерес представляет взаимосвязь значений, относящихся к разным моментам времени.

Если значения ряда известны в отдельные моменты времени, то такой ряд называют дискретным , в отличие от непрерывного , значения которого известны в любой момент времени. Интервал между двумя последовательными моментами времени назовём тактом (шагом) . Здесь будут рассматриваться в основном дискретные временные ряды с фиксированной протяжённостью такта, принимаемой за единицу счёта. Заметим, что временные ряды экономических показателей, как правило, дискретны.

Значения ряда могут быть измеряемыми непосредственно (цена, доходность, температура), либо агрегированными (кумулятивными) , например, объём выпуска; расстояние, пройдённое грузоперевозчиками за временной такт.

Если значения ряда определяются детерминированной математической функцией, то ряд называют детерминированным . Если эти значения могут быть описаны лишь с привлечением вероятностных моделей, то временной ряд называют случайным .

Явление, протекающее во времени, называют процессом , поэтому можно говорить о детерминированном или случайном процессах. В последнем случае используют часто термин “стохастический процесс” . Анализируемый отрезок временного ряда может рассматриваться как частная реализация (выборка) изучаемого стохастического процесса, генерируемого скрытым вероятностным механизмом.

Временные ряды возникают во многих предметных областях и имеют различную природу. Для их изучения предложены различные методы, что делает теорию временных рядов весьма разветвленной дисциплиной. Так, в зависимости от вида временных рядов можно выделить такие разделы теории анализа временных рядов:

– стационарные случайные процессы, описывающие последовательности случайных величин, вероятностные свойства которых не изменяются во времени. Подобные процессы широко распространены в радиотехнике, метереологии, сейсмологии и т. д.

– диффузионные процессы, имеющие место при взаимопроникновении жидкостей и газов.

– точечные процессы, описывающие последовательности событий, таких как поступление заявок на обслуживание, стихийных и техногенных катастроф. Подобные процессы изучаются в теории массового обслуживания.

Мы ограничимся рассмотрением прикладных аспектов анализа временных рядов, которые полезны при решении практических задач в экономике, финансах. Основной упор будет сделан на методы подбора математической модели для описания временного ряда и прогнозирования его поведения.

1.Цели, методы и этапы анализа временных рядов

Практическое изучение временного ряда предполагает выявление свойств ряда и получение выводов о вероятностном механизме, порождающем этот ряд. Основные цели при изучении временного ряда следующие:

– описание характерных особенностей ряда в сжатой форме;

– построение модели временного ряда;

– предсказание будущих значений на основе прошлых наблюдений;

– управление процессом, порождающим временной ряд, путем выборки сигналов, предупреждающих о грядущих неблагоприятных событиях.

Достижение поставленных целей возможно далеко не всегда как из-за недостатка исходных данных (недостаточная длительность наблюдения), так из-за изменчивости со временем статистической структуры ряда.

Перечисленные цели диктуют в значительной мере, последовательность этапов анализа временных рядов:

1) графическое представление и описание поведения ряда;

2) выделение и исключение закономерных, неслучайных составляющих ряда, зависящих от времени;

3) исследование случайной составляющей временного ряда, оставшейся после удаления закономерной составляющей;

4) построение (подбор) математической модели для описания случайной составляющей и проверка ее адекватности;

5) прогнозирование будущих значений ряда.

При анализе временных рядов используются различные методы, наиболее распространенными из которых являются:

1) корреляционный анализ, используемый для выявления характерных особенностей ряда (периодичностей, тенденций и т. д.);

2) спектральный анализ, позволяющий находить периодические составляющие временного ряда;

3) методы сглаживания и фильтрации, предназначенные для преобразования временных рядов с целью удаления высокочастотных и сезонных колебаний;

5) методы прогнозирования.

2.Структурные компоненты временного ряда

Как уже отмечалось, в модели временного ряда принято выделять две основные составляющие: детерминированную и случайную (рис.). Под детерминированной составляющей временного ряда

понимают числовую последовательность , элементы которой вычисляются по определенному правилу как функция времени t . Исключив детерминированную составляющую из данных, мы получим колеблющийся вокруг нуля ряд, который может в одном предельном случае представлять чисто случайные скачки, а в другом – плавное колебательное движение. В большинстве случаев будет нечто среднее: некоторая иррегулярность и определенный систематический эффект, обусловленный зависимостью последовательных членов ряда.

В свою очередь, детерминированная составляющая может содержать следующие структурные компоненты:

1) тренд g, представляющий собой плавное изменение процесса во времени и обусловленный действием долговременных факторов. В качестве примера таких факторов в экономике можно назвать: а) изменение демографических характеристик популяции (численности, возрастной структуры); б) технологическое и экономическое развитие; в) рост потребления.

2) сезонный эффект s , связанный с наличием факторов, действующих циклически с заранее известной периодичностью. Ряд в этом случае имеет иерархическую шкалу времени (например, внутри года есть сезоны, связанные с временами года, кварталы, месяцы) и в одноименных точках ряда имеют место сходные эффекты.


Рис. Структурные компоненты временного ряда.

Типичные примеры сезонного эффекта: изменение загруженности автотрассы в течение суток, по дням недели, временам года, пик продаж товаров для школьников в конце августа - начале сентября. Сезонная компонента со временем может меняться, либо носить плавающий характер. Так на графике объема перевозок авиалайнерами (см рис.) видно, что локальные пики, приходящиеся на праздник Пасхи «плавают» из-за изменчивости ее сроков.

Циклическая компонента c , описывающая длительные периоды относительного подъема и спада и состоящая из циклов переменной длительности и амплитуды. Подобная компонента весьма характерна для рядов макроэкономических показателей. Циклические изменения обусловлены здесь взаимодействием спроса и предложения, а также наложением таких факторов, как истощение ресурсов, погодные условия, изменения в налоговой политике и т. п. Отметим, что циклическую компоненту крайне трудно идентифицировать формальными методами, исходя только из данных изучаемого ряда.

«Взрывная» компонента i , иначе интервенция, под которой понимают существенное кратковременное воздействие на временной ряд. Примером интервенции могут служить события «черного вторника» 1994г., когда курс доллара за день вырос на несколько десятков процентов.

Случайная составляющая ряда отражает воздействие многочисленных факторов случайного характера и может иметь разнообразную структуру, начиная от простейшей в виде «белого шума» до весьма сложных, описываемых моделями авторегрессии-скользящего среднего (подробнее дальше).

После выделения структурных компонент необходимо специфицировать форму их вхождения во временной ряд. На верхнем уровне представления с выделением лишь детерминированной и случайной составляющих обычно используют аддитивную либо мультипликативную модели.

Аддитивная модель имеет вид

;

мультипликативная –

1 Виды и методы анализа временных рядов

Временным рядом называется ряд наблюдений за значениями некоторого показателя (признака), упорядоченный в хронологической последовательности, т.е. в порядке возрастания переменной t- временного параметра. Отдельные наблюдения временного ряда называются уровнями этого ряда.

1.1 Виды временных рядов

Временные ряды делятся на моментные и интервальные. В моментных временных рядах уровни характеризуют значения показателя по состоянию на определенные моменты времени. Например, моментными являются временные ряды цен на определенные виды товаров, временные ряды курсов акций, уровни которых фиксируются для конкретных чисел. Примерами моментных временных рядов могут служить также ряды численности населения или стоимости основных фондов, т.к. значения уровней этих рядов определяются ежегодно на одно и то же число.

В интервальных рядах уровни характеризуют значение показателя за определенные интервалы (периоды) времени. Примерами рядов этого типа могут служить временные ряды производства продукции в натуральном или стоимостном выражении за месяц, квартал, год и т.д.

Иногда уровни ряда представляют собой не непосредственно наблюдаемые значения, а производные величины: средние или относительные. Такие ряды называются производными. Уровни таких временных рядов получаются с помощью некоторых вычислений на основе непосредственно наблюдаемых показателей. Примерами таких рядов могут служить ряды среднесуточного производства основных видов промышленной продукции или ряды индексов цен.

Уровни ряда могут принимать детерминированные или случайные значения. Примером ряда с детерминированными значениями уровней служит ряд последовательных данных о количестве дней в месяцах. Естественно, анализу, а в дальнейшем и прогнозированию, подвергаются ряды со случайными значениями уровней. В таких рядах каждый уровень может рассматриваться как реализация случайной величины - дискретной или непрерывной.

1.2 Методы анализа временных рядов

Методы анализа временных рядов. Для решения этих задач существует большое количество различных методов. Из них наиболее распространенными являются следующие:

1. Корреляционный анализ, позволяющий выявить существенные периодические зависимости и их лаги (задержки) внутри одного процесса (автокорреляция) или между несколькими процессами (кросскорреляция);

2. Спектральный анализ, позволяющий находить периодические и квазипериодические составляющие временного ряда;

3. Сглаживание и фильтрация, предназначенные для преобразования временных рядов с целью удаления из них высокочастотных или сезонных колебаний;

5. Прогнозирование, позволяющее на основе подобранной модели поведения временного рада предсказывать его значения в будущем.

2 Основы прогнозирования развития перерабатывающих отраслей и торговых организаций

2.1 Прогнозирование развития перерабатывающих предприятий

Сельскохозяйственная продукция производится на предприятиях различных организационных форм. Здесь она может храниться, сортироваться и готовиться к переработке, вместе с тем могут быть и специализированные предприятия хранения. Дальше продукция транспортируется на перерабатывающие предприятия, где производится разгрузка, хранение, сортировка, переработка, фасовка; отсюда осуществляется транспортировка в торговые предприятия. На самих же предприятиях торговли производится реализация послепродажная упаковка и доставка.

Все виды перечисленных технологически и организационных операций должны прогнозироваться и планироваться. При этом используются различные приемы и методы.

Но надо отметить, что пищевые перерабатывающие предприятия имеют некоторую специфику планирования.

Пищевая перерабатывающая промышленность занимает важное место в системе АПК. Сельскохозяйственное производство обеспечивает эту промышленность сырьевыми ресурсами, то есть по существу, имеется жесткая технологическая связь между сферами 2 и 3 АПК.

В зависимости от вида используемого сырья и особенностей реализации конечной продукции сложились три группы отраслей пищевой и перерабатывающей промышленности: первичной и вторичной переработки сельскохозяйственных ресурсов и добывающей пищевой промышленности. В первую группу входят отрасли, которые перерабатывают малотранспортабельную сельскохозяйственную продукцию (крахмалопаточная, плодоовощеконсервная, спиртовая и др.), во вторую – отрасли использующие сельскохозяйственное сырьё, которое прошло первичную переработку (хлебопекарная, кондитерская, пищеконцетратная, производство сахара рафинада и др.). К третьей группе относятся соленая и рыбная отрасли.

Предприятия первой группы располагаются ближе к районам производства сельскохозяйственное продукции, здесь производство носит сезонный характер. Предприятия второй группы тяготеют, как правила, к районам потребления этой продукции; они работают ритмично на протяжении всего года.

Наряду с общими особенностями предприятия всех трех групп имеют свои внутренние, обусловленные номенклатурой выпускаемой продукции, в используемых технических средствах, технологиях, организации труда и производства и др.

Важным исходным началом прогнозирования этих отраслей является учет внешних и внутренних особенностей, специфики каждой отрасли промышленности.

В состав пищевых и перерабатывающих отраслей АПК входят зерноперерабатывающая, хлебопекарная и макаронная, сахарная, маложирная, кондитерская, плодоовощная, пищеконцетратная и др.

2.2 Прогнозирование развития торговых организаций

В торговле при ее прогнозировании используются те же методы, что и в других отраслях народного хозяйства. Перспективными являются создание рыночных структур в виде сети оптовых продовольственных рынков, совершенствование фирменной торговли, а также создание широкой информационной сети. Оптовая торговля позволяет сократить количество посредников при доведении продукции от товаропроизводителя до потребителя, создать альтернативные каналы реализации, точнее прогнозировать потребительский спрос и предложение.

В большинстве случаев план экономического и социального развития торгового предприятия состоит в основном из пяти разделов: розничный и оптовый товарооборот и товарное обеспечение; финансовый план; развитие материально-технической базы; социально развитие коллективов; план по труду.

Планы могут разрабатываться в виде долгосрочных – до 10 лет, среднесрочных – от трех до пяти лет, текущих – до одного месяца.

В основе планирования – товарооборот по каждой ассортиментной группе товаров.

Оптовый и розничный товарооборот может прогнозироваться в следующей последовательности:

1. оценивают ожидаемое выполнение плана за текущий год;

2. исчисляют среднегодовые темпы товарооборота за два-три года, предшествовавших периоду прогноза;

3. на основании анализа первых двух позиций экспертным методом устанавливают в процентах темпы роста (снижения) продажи отдельных товаров (товарных групп на прогнозируемый период).

Умножением объема ожидаемого товарооборота за текущий год на прогнозируемый темп роста продажи рассчитывают возможный товарооборот в прогнозируемом периоде.

Необходимые товарные ресурсы состоят из ожидаемого товарооборота и товарных запасов. Товарные запасы могут измеряться в натуральном и денежном выражении или в днях оборота. Товарные запасы обычно планируют на основе экстраполяции данных по четвертому кварталу за ряд лет.

Товарное обеспечение определяют путем сравнения потребности в необходимых товарных ресурсах и их источников. Необходимые товарные ресурсы рассчитывают как сумму товарооборота, вероятного прироста товарных запасов за минусом естественной убыли товаров и их уценки.

Финансовый план торгового предприятия включает кассовый план, кредитный план и сметы доходов и расходов. Кассовый план составляю по квартально, в кредитном плане определяют потребность в различных видах кредита, в смете доходов и расходов – по статьям доходы и поступления денежных средств, расходы и отчисления средств.

Объектами планирования материально-технической базы является торговая сеть, техническое оснащение, складское хозяйство, то есть планируются общая потребность в торговой площади, торговых предприятиях, их размещение и специализация, потребность в механизмах и оборудовании, необходимые складские емкости.

Показатели социального развития коллектива включают разработку планов повышения квалификации, улучшения условий труда и охраны здоровья работников, жилищных и культурно-бытовых условий, развития общественной активности.

Достаточно сложным разделом является план по труду. Необходимо подчеркнуть, что в торговле результатом труда выступает не продукт, а услуга, здесь преобладают затраты живого труда в связи с затруднением механизации большинства трудоемких процессов.

Производительность труда в торговле измеряется показателями среднего товарооборота, приходящегося на одного работника за определенный период времени, то есть сумма товарооборота делится на среднесписочную численность работников. В связи с тем что реализация различных товаров по своей трудоемкости не одинакова, при планировании следует учитывать изменения в товарообороте, индексы цен, ассортиментный состав товаров.

Развитие товарооборота требует увеличения количества предприятий торговли, общественного питания. При расчете количества на плановый период исходя из нормативов обеспеченности населения торговыми предприятиями для городской и сельской местности.

В качестве примера приведем содержание плана экономического и социального развития плодоовощного торгового предприятия. Он включает следующие разделы: исходные данные; основные экономические показатели работы предприятия; техническое и организационное развитие предприятия; план закладки продукции на длительное хранение; план реализации продукции; план розничного товарооборота; распределение издержек по завозу, хранению и оптовой реализации по группам товаров; издержки обращения розничной реализации продукции; затраты на производства продукции, ее переработку и реализацию; численность работников и фонд заработной планы; прибыль от оптовой реализации продукции; план прибыли от всех видов деятельности; распределение дохода; распределение прибыли; социальное развитие коллектива; финансовый план. Методика составления этого плана такая же, как и в других отраслях АПК.

3 Расчет прогноза экономического временного ряда

Имеются данные об экспорте железобетонной продукции товаров (в страны вне СНГ), млрд. долларов США.

Таблица 1

Экспорт товаров за 2002, 2003, 2004, 2005 годы (млрд.долларов США)

Прежде, чем приступить к анализу, обратимся к графическому изображению исходных данных (рис. 1).

Рис. 1. Экспорт товаров

Как видно из построенного графика, четко прослеживается тенденция к увеличению объемов импорта. Проанализировав полученный график можно сделать вывод о нелинейном развитии процесса, предположив об экспоненциальном или параболическом развитии.

Теперь сделаем графический анализ квартальных данных за четыре года:

Таблица 2

Экспорт товаров за кварталы 2002,2003, 2004 и 2005 годов

Рис. 2. Экспорт товаров

Как видно из графика яркое выражение имеет сезонность колебаний. Амплитуда колебания довольно не фиксированная, что указыает на наличие мультипликативной модели.

В исходных данных нам представлен интервальный ряд с равноотстоящими уровнями во времени. Поэтому для определения среднего уровня ряда воспользуемся следующей формулой:

Млрд.долл.

Для количественной оценки динамики явлений применяются следующие основные аналитические показатели:

· абсолютный прирост;

· темпы роста;

· темпы прироста.

Рассчитаем каждый из этих показателей для интервального ряда с равноотстоящими уровнями во времени.

Представим статистические показатели динамики в виде таблицы 3.

Таблица 3

Статистические показатели динамики

t y t Абсолютный прирост, млрд.долларов США Темп роста, % Темп прироста, %
Цепной Базисный Цепной Базисный Цепной Базисный
1 48,8 - - - - - -
2 61,0 12,2 12,2 125 125 25 25
3 77,5 16,5 28,7 127,05 158,81 27,05 58,81
4 103,5 26 54,7 133,55 212,09 33,55 112,09

Темпы роста были примерно одинаковые. Это говорит о том, что для определения прогнозного значения можно использовать средний темп роста:

Проверим гипотезу о наличии тренда с помощью критерия Фостера-Стюарта . Для этого заполним вспомогательную таблицу 4:

Таблица 4

Вспомогательная таблица

t yt mt lt d t yt mt lt d
1 9,8 - - - 9 16,0 0 0 0
2 11,8 1 0 1 10 18,0 1 0 1
3 12,6 1 0 1 11 19,8 1 0 1
4 14,6 1 0 1 12 23,7 1 0 1
5 12,9 0 0 0 13 21,0 0 0 0
6 14,7 1 0 1 14 23,9 1 0 1
7 15,5 1 0 1 15 26,9 1 0 1
8 17,8 1 0 1 16 31,7 1 0 1

Применим критерий Стьюдента:

Получаем, , то есть , следовательно гипотеза Н 0 отвергается, тренд есть.

Проанализируем структуру временного ряда с использованием коэффициента автокорреляции.

Найдем последовательно коэффициенты автокорреляции:

коэффициент автокорреляции первого порядка, так как сдвиг во времени равен единице (-лаг).

Аналогично находим остальные коэффициенты.

– коэффициент автокорреляции второго порядка.

– коэффициент автокорреляции третьего порядка.

– коэффициент автокорреляции четвертого порядка.

Таким образом, мы видим, что самым высоким является коэффициент автокорреляции четвертого порядка. Это говорит о том, что во временном ряде присутствуют сезонные колебания с периодичностью в четыре квартала.

Проверим значимость коэффициента автокорреляции. Для этого введем две гипотезы: Н 0: , Н 1: .

Находится по таблице критических значений отдельно для >0 и <0. Причем, если ||>||, то принимается гипотеза Н 1 ,то есть коэффициент значим. Если ||<||, то принимается гипотеза Н 0 и коэффициент автокорреляции незначим. В нашем случае коэффициент автокорреляции достаточно велик, и проверять его значимость необязательно.

Требуется провести сглаживание временного ряда и восстановить потерянные уровни.

Проведем сглаживание временного ряда с помощью простой скользящей средней. Результаты расчетов представим в виде следующей таблицы 13.

Таблица 5

Сглаживание исходного ряда с помощью скользящей средней

№ года № квартала t Импорт товаров, млрд.долларов США, yt Скользящая средняя,
1 I 1 9,8 - -
II 2 11,8 - -
III 3 12,6 12 , 59 1,001
IV 4 14,6 13,34 1,094
2 I 5 12,9 14,06 0,917
II 6 14,7 14,83 0,991
III 7 15,5 15,61 0,993
IV 8 17,8 16,41 1,085
3 I 9 16 17,36 0,922
II 10 18 18,64 0,966
III 11 19,8 20,0 0,990
IV 12 23,7 21,36 1,110
4 I 13 21 22,99 0,913
II 14 23,9 24,88 0,961
III 15 26,9 - -
IV 16 31,7 - -

Теперь рассчитаем отношение фактических значений к уровням сглаженного ряда. В результате получим временной ряд, уровни которого отражают влияние случайных факторов и сезонности.

Предварительные оценки сезонной составляющей получим усреднением уровней временного ряда для одноименных кварталов:

Для I квартала:

Для II квартала:

Для II квартала:

Для IV квартала:

Взаимопогашаемость сезонных воздействий в мультипликативной форме выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна числу фаз в цикле. В нашем случае число фаз равно четырем. Просуммировав средние значения по кварталам, получаем:

Поскольку сумма получилась неравной четырем, необходимо произвести корректировку значений сезонной составляющей. Найдем поправку, на которую надо изменить предварительные оценки сезонности:

Определяем скорректированные значения сезонной, результаты сведем в таблицу 6.

Таблица 6

Оценивание сезонной компоненты в мультипликативной модели .

№ квартала i Предварительная оценка сезонной компоненты, Скорректированное значение сезонной компоненты,
I 1 0,917 0,921
II 2 0,973 0,978
III 3 0,995 1,000
IV 4 1,096 1,101
3,981 4

Проводим сезонную корректировку исходных данных, то есть, удаляем сезонную составляющую.

Таблица 7

Построение мультипликативной тренд сезонной модели.

t Импорт товаров , млрд.долларов США Сезонная компонента, Десезонализированный импорт товаров, Расчетное значение, Расчетное значение импорта товаров,
1 9,8 0,921 10,6406 11,48 10,57308
2 11,8 0,978 12,0654 11,85 11,5893
3 12,6 1 12,6 12,32 12,32
4 14,6 1,101 13,2607 12,89 14,19189
5 12,9 0,921 14,0065 13,56 12,48876
6 14,7 0,978 15,0307 14,33 14,01474
7 15,5 1 15,5 15,2 15,2
8 17,8 1,101 16,1671 16,17 17,80317
9 16 0,921 17,3724 17,24 15,87804
10 18 0,978 18,4049 18,41 18,00498
11 19,8 1 19,8 19,68 19,68
12 23,7 1,101 21,5259 21,05 23,17605
13 21 0,921 22,8013 22,52 20,74092
14 23,9 0,978 24,4376 24,09 23,56002
15 26,9 1 26,9 25,76 25,76
16 31,7 1,101 28,792 27,53 30,31053

По МНК получаем следующее уравнение тренда:3

12,6 12,32 0,28 0,0784 0,021952 0,006147 4 14,6 14,19 0,41 0,1681 0,068921 0,028258 5 12,9 12,49 0,41 0,1681 0,068921 0,028258 6 14,7 14,01 0,69 0,4761 0,328509 0,226671 7 15,5 15,2 0,3 0,09 0,027 0,0081 8 17,8 17,8 0 0 0 0 9 16 15,88 0,12 0,0144 0,001728 0,000207 10 18 18 0 0 0 0 11 19,8 19,68 0,12 0,0144 0,001728 0,000207 12 23,7 23,18 0,52 0,2704 0,140608 0,073116 13 21 20,74 0,26 0,0676 0,017576 0,00457 14 23,9 23,56 0,34 0,1156 0,039304 0,013363 15 26,9 25,76 1,14 1,2996 1,481544 1,68896 16 31,7 30,31 1,39 1,9321 2,685619 3,73301 ∑ 290,7 5,3318 4,436138 6,164343

Изобразим графически ряд остатков:

Рис. 3. График остатков

Проанализировав полученный график можно сделать вывод о случайности колебаний этого ряда.

Так же качество модели можно проверить с помощью показателей асимметрии и эксцесса остатков. В нашем случае получаем:

,

то гипотеза о нормальном распределении остатков отвергается.

Поскольку одно из неравенств выполняется, то уместен вывод о том, что гипотеза о нормальном характере распределения остатков отвергается.

Заключительным этапом применения кривых роста является расчет прогнозов на базе выбранного уравнения.

Для прогнозирования импорта товаров в следующем году оценим значения тренда при t =17, t =18, t =19 и t =20:

4. Личко Н.М. Планирование на предприятиях АПК. – М., 1996.

5. Финам. События и рынки, – http://www.finam.ru/